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Abstract

Copy number aberrations (CNAs) are critical drivers of genomic diversity in oncology, where recurrent CNAs frequently underlie tumorigenesis.
However, existing public resources are limited in their somatic CNA specificity, breadth across multiple data modalities, and support for recurrent
CNAs with online functional annotation and interactive visualization. Here, we present CNAScope (https://cna.fengslab.com/), a database that
curates and functionally annotates over 3 954 361 CNA profiles and 3 946 319 metadata from 810 datasets, 174 464 samples, 3 018 672 single
cells, and 764 232 spatial cells/spots, spanning 77 cancer subtypes from eight data sources and 55 cancer initiatives and institutions. CNAScope
offers downloadable CNA annotations and interactive visualizations at bin, gene, and pathway term levels, including phylogenetic inference,
clustering, dimension reduction, and focal/consensus CNA detection. Users can explore data through interactive heatmaps, phylogenetic trees,
embedding plots, CN charts, and focal/consensus plots, or upload and annotate their own CNAs in real time. In all, with its large curated data
volume and rich annotation capabilities, CNAScope serves as a vital resource for accelerating cancer research.
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Introduction CNAs can disrupt gene dosage, perturb regulatory net-

Copy number aberrations (CNAs)—large-scale somatic gains
and losses of chromosomal segments—drive genomic di-
versity and play a pivotal role in cancer development [1].

works, and alter malignant transformation [1, 2]. Advances
in high-throughput genomics now enable systematic CNA
detection across diverse experimental protocols, including
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microarrays [3], bulk whole-genome/exome sequencing
(WGS [4], WES [5]), single-cell DNA/RNA sequencing
(scDNA-seq [6, 7], scRNA-seq [8]), spatial DNA sequenc-
ing [9], and spatial transcriptomics (ST) [10]. These tech-
nologies allow detailed profiling of CNA homogeneity and
heterogeneity at the level of single cells, spatial cells/spots,
and samples.

Interpreting CNA data requires effective annotation and vi-
sualization from two complementary perspectives: observa-
tion and function. The observational perspective focuses on
individual samples, single cells, or spatial cells/spots, allowing
the exploration of intra- and inter-group heterogeneity, such
as differences among cancer subtypes or tumor clones. Ana-
lytical approaches—phylogenetic inference, clustering, and di-
mension reduction—help reveal these relationships [11, 12].
The functional perspective maps CNAs to genes and path-
way terms, enabling interpretation of their biological signif-
icance [2]. Systematic annotation across multiple CNA pro-
files identifies recurrent aberrations, which are critical for pin-
pointing driver events and assessing clinical relevance [13].
Visualizations such as CNA heatmaps, phylogenetic trees, em-
bedding maps, CN plots, focal CNA plots, and consensus gene
plots are indispensable for the intuitive exploration and inter-
pretation of CNA patterns at bin, gene, and term levels [14].
These tools bridge the gap between observation-level varia-
tion and functional impact, supporting comprehensive biolog-
ical insight and clinical translation.

While several online portals and databases exist, they face
notable limitations: (i) Some resources primarily focus on
germline aberrations or capture somatic aberrations relevant
to cancer but do not specifically highlight CNAs [15-20]. (ii)
Most databases are limited to a single data modality—either
bulk DNA [15, 16, 18, 19], single-cell [7, 21], or transcrip-
tomics [22]. (iii) Advanced annotation features like focal and
consensus event detection are rarely highlighted [7, 16, 18, 21,
22].

To address these limitations, we present CNAScope (https:
/lcna.fengslab.com/), a database that collects, curates, and an-
notates bulk, single-cell, and spatial CNA profiles and meta-
data across 810 datasets, 174 464 samples, 3 018 672 sin-
gle cells, and 764 232 spatial cells/spots for 77 cancer sub-
types. Drawing on eight online resources, CNAScope encom-
passes 55 cancer genomics initiatives and institutions, holding
data generated by 12 sequencing protocols and 34 platforms.
We curated CNA profiles derived from 32 computational
workflows. CNAScope provides comprehensive, download-
able annotations for both CNA profiles and metadata, includ-
ing phylogenetic trees, observation clusters, gene- and term-
level CNAs, focal CNAs/genes/terms from single CNA profile,
and consensus CNAs/genes/terms across multiple CNA pro-
files from the same dataset. Furthermore, CNAScope features
interactive visual tools for database and annotation result ex-
ploration, as well as streamlined online annotation workflows
for users’ newly generated CNA profiles, supporting both ex-
ploratory and hypothesis-driven research.

Materials and methods

Dataset collection

We systematically searched public repositories using the
keywords “cancer,” “tumor,” and “copy number aberra-
tion/variation” to identify relevant CNA datasets. Our col-

lection spanned next-generation sequencing data—including
both bulk WGS and WES—as well as probe-based microar-
rays. Following careful manual curation, quality control, fil-
tering, and subdivision, we compiled CNA data from three
resources: the cBioPortal [15], COSMIC [16], and GDC Por-
tal [18]. Beyond bulk DNA, our collection was further en-
hanced by incorporating DNA and RNA data from published
single-cell and spatially resolved datasets, including resources
like HSCGD [21], scTML [22], 10x Genomics [7], NCBI
GEO [23], and Broad SCP [24].

Detailed procedures for data download, processing, and
quality control are described in Supplementary Methods 1.1.

Metadata curation

We manually curated cancer subtype annotations for
all datasets. Our classification prioritized alignment with
TCGA [25] and TARGET [26] subtype definitions (e.g. lung
adenocarcinoma [LUAD] and lung squamous cell carcinoma
[LUSC]) by reviewing the original disease descriptions, pri-
mary site, and metastatic status. When a dataset could not
be directly mapped to a specific subtype, we assigned it to a
broader cancer-type category (e.g. lung cancer).

Bulk datasets were annotated at the patient-sample level.
Two primary clinical endpoints were recorded: overall sur-
vival (OS; time from diagnosis to death or last follow-
up) and progression-free survival (PFS; time to recur-
rence/relapse/progression or last follow-up). Additional clin-
ical information, such as tumor stage, grade, ethnicity, race,
gender, and age, was collected when available. For single-cell
and spatial datasets, observations were annotated as single
cells or spatial cells/spots, including cell type, CNA confidence,
donor identity, and malignancy status.

All metadata were independently reviewed by at least three
authors to ensure accuracy. The finalized version is available
at https://cna.fengslab.com/database.

Valuation scales and locus resolutions in raw CNA
data

The collected raw CNA data from different sources vary in
both valuation scale and locus resolution due to heteroge-
neous data modalities, sequencing protocols, and computa-
tional workflows.

We observe three valuation scales in raw CNA data: (i) ab-
solute copy number (ACN), (ii) ACN estimate, and (iii) log,
ratio. ACN denotes the integer number of copies of a specific
locus per cancer cell [27]. By convention: 0 means homozy-
gous deletion, 1 is loss of heterozygosity, 2 refers to diploid,
and >2 indicates amplifications. Estimated ACN refers to
non-integer, floating-point values resulting from CNA infer-
ence. Such estimates arise due to normal-cell admixture (pu-
rity <1), subclonality, and measurement noise [27]. In this
work, we call these fractional values “ACN estimates.” Log,
ratio is a widely used representation for CNA data from se-
quencing and microarrays. It is centered at O (neutral), with
gains >0 and losses <0, providing a symmetric scale relative
to the normal state [28].

We encounter three raw CNA locus resolutions: (i)
segment-level BED, (ii) bin-level matrices, and (iii) gene-level
matrices. BED-formatted segment calls (per observation), as in
GDC [18] bulk DNA data, provide sample-specific CNA seg-
ments with unique breakpoints. Segmentation is not aligned
across samples within a dataset, reflecting both inter-tumor
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heterogeneity and per-sample calling. In contrast, matrix-
formatted CNA data from other sources provides dataset-
wide, aligned loci. Bin-level matrices use a common binning
scheme across all observations via joint CNA calling with
fixed genomic bins, thereby aligning loci within a dataset
(though not necessarily across datasets that use different bin
sets). Gene-level matrices report CNA on a shared gene index,
yielding consistent loci within a dataset (though not necessar-
ily across datasets that use different gene references).

Observational annotation
CNA binning for datasets with segment-level CNA

CNAScope supports three types of downstream observa-
tional annotations: phylogenetic inference, observation clus-
tering, and dimension reduction. Most mainstream tools for
these tasks expect CNA data in a matrix format (observa-
tions x bins/genes) [29-35]. Thus, for datasets that only have
segment-level CNAs in BED format, we convert segments into
bin-level matrices by tiling the genome into consecutive bins
and aggregating segment values within each bin. We provide
conversions at 200 kb, 500 kb, and 5 Mb, which are com-
monly used bin sizes in standard CNA calling workflows [6,
36-39]. When multiple segments overlap a bin, we com-
pute a length-weighted average of the overlapping CN val-
ues. Length-weighted averaging is a standard approach that
reflects the proportional genomic contribution of each seg-
ment and mitigates overemphasis of short intervals [40]. Be-
cause aggregation can combine heterogeneous segments, orig-
inal ACN values are treated as continuous ACN estimates
rather than integers post-binning, avoiding inappropriate dis-
cretization. Similarly, log, ratios are retained on the log; scale
after binning.

In summary, for phylogenetic inference, observation clus-
tering, and dimension reduction, we use raw bin- or gene-
level CNA matrices when available; otherwise, we derive
bin-level matrices from segment-level CNA data. Our quan-
titative assessment of bin-size effects (200 kb, 500 kb, §
Mb) shows modest impact on these observational annota-
tions, with moderate but acceptable concordance across res-
olutions, allowing users to choose their preferred granularity
(Supplementary Results 2.1 and Supplementary Fig. 1).

Phylogenetic inference

To analyze phylogenetic relationships among observations
(samples, single cells, or spatial cells/spots), we used a two-step
approach based on the established pipeline [14]. First, hierar-
chical clustering with a weighted similarity metric was applied
to generate a dendrogram. For 10x Chromium CNV scDNA-
seq data, clustering results were directly extracted from Cell
Ranger DNA h5 files [7]; for other datasets, clustering was
performed using scipy.cluster.hierarchy [29]. Next,
we present the resulting dendrograms as interactive, zoomable
trees, enabling detailed exploration of phylogenetic structures.

Observation clustering

CNAScope clusters observations using a default cluster num-
ber of k = 10, following the established pipeline [14]. The
phylogenetic dendrogram is cut to produce k distinct clusters.

Dimension reduction

A suite of linear and manifold dimension reduction meth-
ods from the established pipeline [14], including PCA [30],

ICA [31], NMF [32], UMAP [33], t-SNE [34], and
PHATE [35], is used to generate two-dimensional embeddings
for observations in each dataset.

Functional annotation
Gene-level CNA

For datasets lacking raw gene-level CNA data, we de-
rive gene-level CNAs from the corresponding bin-level
CNA matrices. Gene coordinates were retrieved from
Ensembl [41] (GRCh37/hg19: https://grch37.rest.ensembl.
org, GRCh38/hg38: https://rest.ensembl.org). Using BED-
Tools [42], we identified overlaps between gene regions and
CNA bins. For each gene, the CN value was computed as the
weighted average of CNs from all overlapping bins. This step
was omitted for datasets where raw CNA data were already
provided at the gene level.

Term-level CNA

Using the gene-level CNA matrices, we constructed term-level
CNA matrices by averaging the CNs of all genes within
each pathway term. Functional terms were sourced from
MSigDB [43] (https://data.broadinstitute.org/gsea-msigdb/
msigdb/release/2025.1.Hs/), including MSigDB-Hallmark,
MSigDB-C2-KEGG (Kyoto Encyclopedia of Genes and
Genomes [44]), MSigDB-C4-Computational, MSigDB-C5-
GOBP (Gene Ontology Biological Process [45]), MSigDB-Cé6-
Oncogenic, and MSigDB-C7-Immunologic collections.

Regarding value scales in gene- and term-level CNA data,
after averaging, ACN is reported as an ACN estimate, and
both the ACN estimate and log,-ratio retain their original
scales.

Highly and spatially variable CN Bin/Gene/Term

In each dataset and at each locus resolution (bin-level, gene-
level, and term-level), we computed the variance of CN for
each locus across observations and selected the 1000 most
variable loci. When spatial coordinates were available, we
built a k-nearest-neighbor spatial weights matrix (k = 10) us-
ing 1ibpysal. For each preselected highly variable locus, we
calculated Global Moran’s I and its two-tailed p-value (nor-
mal approximation) with esda. Within each resolution, p-
values were adjusted for multiple testing via the Benjamini—
Hochberg FDR procedure (P < .05) using statsmodels.
The pipeline returns, for each resolution, (i) a table of top-
variance loci and, when spatial coordinates are available, (ii)
a table reporting Moran’s I, raw and adjusted P-values, and a
binary spatial-significance flag.

Focal CNA/Gene/Term

Focal CNAs (gains and losses) are recurrent, small-scale CNA
events observed across samples, and focal genes are those
overlapping these focal CNAs [46]. GISTIC2 [47], a widely
adopted tool, was designed for bulk datasets with indepen-
dent samples and expects CN values on the log,-ratio scale
(microarray by default, with NGS supported after conversion
to logy-ratio [48]).

As our benchmarking indicates that GISTIC2 is sensitive to
bin size (Supplementary Results 2.1 and Supplementary Fig.
S1), CNAScope runs GISTIC2 on bulk DNA datasets only
when raw segment-level CNA calls (e.g. BED from microarray
or WGS) are available. If needed, CN values x are converted
to log,-ratios from ACN or ACN estimates using log, (x/2).
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For datasets with gene-level matrices—or for single-cell and
spatial datasets where observations are cells or spots from a
single patient—we omit focal annotation. These inputs do not
meet GISTIC2 [47] assumptions, and dedicated methods for
multi-sample focal detection in single-cell/spatial settings or
for gene-level matrices are currently lacking.

Next, focally amplified and deleted functional terms are an-
notated via pathway over-representation analysis (ORA) on
the GISTIC2 focal genes, using gseapy.enrich [49] with
the six MSigDB [43] collections, as described in the “Term-
Level CNA” subsection.

Consensus CNA/Gene/Term

Because focal events are small in scale, their detection, even
within the same bulk DNA dataset, can be sensitive to copy-
number differences arising from different sequencing proto-
cols and computational workflows (Results-Case Study and
Supplementary Fig. S2).

Thus, CNAScope integrates multiple focal calls from the
same dataset to produce a unified set of focal CNAs, genes,
and terms, referred to as consensus CNAs, consensus genes,
and consensus terms. When only a single segment-level
CNA profile is available, when datasets only provide gene-
level CNAs, or for single-cell and spatial datasets, we omit
the consensus step for the reasons outlined in the “Focal
CNA/Gene/Term” subsection.

The consensus CNAs are called by intersecting focal CNA
segments across protocols/workflows using BEDtools [42].
Similarly, CNAScope defines consensus genes by intersect-
ing focal genes obtained from different protocols/workflows
within the same bulk DNA dataset.

Consensus terms are annotated via ORA by enriching con-
sensus genes against six MSigDB [43] collections, using the
same procedure as for focal terms, as described in the “Focal
CNA/Gene/Term” subsection.

Platform development

The CNAScope platform operates on an Ubuntu 24.04 LTS
server, utilizing Nginx, Django, and PostgreSQL for backend
services. The frontend is built with React and Next.js for
efficient UI rendering and application logic, while dynamic
and interactive visualizations are powered by D3.js, which
enables custom data-driven elements such as heatmaps for
CNA matrices (with features like color mapping, zooming,
and tooltips) and hierarchical tree structures for exploring
layered genomic relationships. Comprehensive tutorials are
available on the web interfaces to guide users through their
features and maximize ease of use.

The release version of CNAScope associated with this
manuscript is Version 1.3 (2025.10.5). We will annually up-
date the ontologies and reference databases to their latest ver-
sions.

Results

An extensive curated and annotated pan-cancer
CNA resource in CNAScope

CNAScope hosts a comprehensive collection of curated and
annotated 3 954 361 copy number alteration (CNA) profiles,
accompanied by extensive metadata, from eight major online
resources (Fig. 1): cBioPortal [15], COSMIC [16], GDC Por-
tal [18], HSCGD [21], scTML [22], 10x Genomics [7], NCBI

GEO [23], and Broad SCP [24]. These datasets are further
supported by 55 large-scale cancer genomics initiatives, such
as TCGA [25], TARGET [26], HCMI [50], ICGC [51], etc.,
as well as leading research institutions, including Memorial
Sloan Kettering, the Broad Institute, etc.

In total, CNAScope collects 173 914 samples from 501
bulk datasets covering 70 cancer subtypes, generated us-
ing platforms such as Affymetrix microarrays [52], lllumina
WGS/WES [53], etc. At single-cell resolution, CNAScope
contains data from 2 457 425 cells spanning 27 cancer
subtypes, derived from 35 scDNA-seq and 192 scRNA-seq
datasets, utilizing protocols including 10x Chromium CNV
[7], 10x Chromium [54], Smart-Seq2 [55], etc. Additionally,
the database encompasses 1 325 479 spatial spots across 14
cancer subtypes, generated with three spatial DNA datasets
and 79 spatial RNA datasets, covering protocols like Slide-
DNA-Seq [9], 10x Visium [56], 10x Xenium [57], Slide-RNA-
Seq v2 [58], etc.

CNAScope holds CNA profiles generated by 32 computa-
tional workflows (e.g. ascatNgs [4], inferCNV [8], Ginkgo [6],
etc.). These profiles span three valuation scales—ACN,
ACN estimate, and log, ratio—and three locus resolutions:
segment-level BED files, bin-level matrices, and gene-level
matrices. Detailed definitions and operations are provided
in Methods. All CNA profiles are available as download-
able files (¥seg.txt, n = 265 and *cna.csv, n = 1140).
CNAScope provides curated metadata (https://cna.fengslab.
com/database), including cancer subtypes, patient character-
istics (ethnicity, race, gender, age), sample-specific features
(disease type, primary site, tumor stage, tumor grade), and
survival endpoints (overall survival and progression-free sur-
vival). For single cells and spatial cells/spots, additional meta-
data such as cell type, CNA confidence, donor identity, and
malignancy status are also curated.

CNAScope performs comprehensive annotation for these
CNA profiles, structured into two main perspectives: obser-
vational and functional.

From the observational perspective, CNAScope offers an-
notations that capture the underlying data structure and rela-
tionships. This includes phylogenetic inference via hierarchi-
cal clustering to reveal sample or cell homogeneity and hetero-
geneity. Approaches for data dimension reduction, including
PCA, ICA, NMF, UMAP, t-SNE, and PHATE, are employed to
facilitate data visualization and interpretation. Downloadable
files for these annotations include xmeta scsvas.csv,n =
1140 and *.nwk, n = 1140.

From the functional perspective, CNAScope provides
biologically meaningful annotations. Gene-level CNA anno-
tation is performed with BEDTools, while pathway term-level
annotation leverages six MSigDB collections, including
cancer hallmarks, KEGG, GOBP, etc. The resulting files
(*gene cna.csv.gz, n = 1140; xterm cna.csv.gz,
n = 1140) are available for users. Next, for each dataset,
we annotated the top 1000 most variable bins, genes,
and terms based on CN values. When spatial coordi-
nates were available, we additionally identified and an-
notated spatially variable CN bins, genes, and terms.
Downloadable files include: #top CN variance.csv,
n = 1137; xtop CN _spatial variance.csv, n =
82. For bulk DNA sample-level analyses, CNAScope
conducts focal CNA, gene, and term annotations us-
ing GISTIC2 and ORA enrichment. The downloadable
results include s#amp genes.conf 95.txt, n=119;
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Figure 1. Content and annotation in CNAScope. CNAScope holds 3 954 361 CNA profiles from eight major databases, delivering in-depth annotation for

each profile.

#del genes.conf 95.txt,n = 119;*xscores.gistic,
n=119; and *focal term.csv n = 119. For bulk
DNA datasets with at least two CNA profiles from dif-
ferent sequencing protocols or computational workflows,
CNAScope also reports consensus CNAs, genes, and terms.
These can be downloaded as: #consensus cna.csv,
n = 34; xconsensus gene.csv, n = 34; and
kxconsensus_term.csv,n = 34.

Online annotation workflows in CNAScope

CNAScope enables researchers to annotate newly generated
CNA profiles from both observational and functional per-
spectives (Fig. 2). The platform offers two annotation work-
flows, designed to accommodate a single CNA profile or cross-
profile agreement.

The first workflow, Basic CNA Annotation, allows users to
upload a single CNA profile, with the option to include meta-
data and custom gene sets. Users specify the observation type
(“sample,” “cell,” or “spot”), reference genome (“hgl9” or
“hg38”), and the desired number of clusters (k). CNAScope
then automatically performs a comprehensive suite of basic
annotations. Observational modules include phylogenetic in-
ference (hierarchical clustering), observation clustering (hi-
erarchical clustering), and dimension reduction (PCA, ICA,
NMEF, UMAP, t-SNE, PHATE). Functional modules provide
gene-level and term-level CNA annotation, with highly vari-
able and spatially variable bins, genes, and terms identified.
When the observation unit is a sample, focal CNA, gene,
and term analyses are performed using GISTIC2 built-in six
MSigDB pathway collections (including cancer hallmarks,
KEGG, GOBP, etc.). Additionally, users can annotate CNA
with their own uploaded target gene set terms.

The second workflow, Consensus CNA Annotation, identi-
fies shared CNAs, genes, and terms from multiple CNA pro-

files generated across different sequencing protocols or com-
putational workflows within a single bulk DNA dataset. Users
must upload at least two CNA profiles derived from the same
bulk DNA dataset, and specify the locus type (segment or bin)
and reference genome (hg19 or hg38), with optional gene sets.
This workflow runs the focal CNA, gene, and term annotation
modules separately for each profile, then derives consensus
CNA, gene, and term annotations across profiles. This yields
a unified call set that provides more confident biological in-
sights by reducing noise introduced by differing sequencing
protocols and computational workflows.

The entire annotation process is streamlined for intuitive,
point-and-click operation, supporting both single- and cross-
profile analyses tailored to diverse research needs. Upon com-
pletion, CNAScope provides downloadable output files (e.g.
*cna.csv, smeta scsvas.csv, xgene cna.csv.gz,
xtop CN_variance.csv,

*CONSensus_cna.csv, skconsensus_gene.csv, and
xconsensus_term.csv) via the user workspace.

To enhance user accessibility, CNAScope provides five de-
mos: Workflow 1 includes TcGA-ACC (bulk DNA), WCDT-
MCRPC (bulk DNA), and BRCA-T10 (scDNA); Workflow 2
features TCGA-BRCA (segment) and TCGA-BRCA (bin). These
demonstration cases offer users step-by-step examples and
guidance throughout the annotation process.

Interactive visualizations in CNAScope

CNAScope features user-friendly web interfaces with main
navigation tabs for Home, Database, Workflow, Workspace,
Tutorial, and Contact. The Home page summarizes the plat-
form’s features and dataset statistics, with graphical overviews
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Figure 2. Overview of online annotation workflows in CNAScope. CNAScope provides standardized and interactive online workflows (Basic CNA

Annotation and Consensus CNA Annotation) for annotating CNA profiles.

(see Figs 1 and 2). The Database page allows users to filter
and browse datasets by source, cancer type, modality, and
other parameters, with each dataset page offering detailed and
downloadable metadata, annotations, and interactive visual-
izations. The Workflow page provides access to basic and con-
sensus CNA annotation online tools, allowing users to option-
ally provide an email address during submission for notifica-
tion upon task completion. The Workspace allows users to
track the status of submitted analyses and download results.
Tutorial and Contact pages offer step-by-step user guides and
ways for additional assistance.

On both the dataset and workflow result pages, CNAScope
provides interactive visualization panels to comprehen-
sively illustrate CNA annotation results [Figs 1 and 2 and
(Supplementary Figs $4-512)]. These include CNA heatmaps
at bin, gene, and term levels; phylogenetic trees; embedding
maps; spatial distribution plots; CN stairstep plots; CN dis-
tribution charts; focal CNA and gene views; consensus genes
vein plots; and focal and consensus term bar plots. These
visualizations are highly interactive and customizable, fea-
turing informative tooltips, adjustable plot sizes, and zoom-
ing. Importantly, every visualization is downloadable in high-
resolution, publication-ready formats.

Case study: focal and consensus annotations
across sequencing protocols and computational
workflows in GDC bulk DNA datasets

In CNAScope, the collected 56 GDC [18] bulk DNA
datasets include multiple segment-level BED CNA profiles
derived from different sequencing protocols—allele-specific
(AS), copy-number segment (CNS), and masked copy-number
segment (MCNS)—and computational workflows: ascat2,
ascat3, ascatNGS, DNAcopy, and GATK4_CNV. For each

dataset, focal CNAs are small amplifications or deletions re-
currently observed across multiple samples, annotated with
GISTIC2 for each individual CNA profile. Genes that fall
within these regions—termed focal—are candidates for bi-
ological significance and potential cancer drivers, as their
aberrations are recurrent events within the same dataset. Six
MSigDB pathway collections—including Hallmark, KEGG,
and GO Biological Process—were enriched for focal genes to
provide pathway-level focal terms for biological interpreta-
tions (see the “Materials and methods” section).

Across 56 GDC datasets, we asked whether CNAScope’s fo-
cal calls are stable when the segment-level protocol and anal-
ysis workflow vary within the same dataset. We compared
all protocol-workflow pairs using Jaccard similarity of focal
sets and tallied the number of shared focals (Supplementary
Fig. S2). Within-protocol comparisons (for example, CNS ver-
sus CNS across different workflows) show higher similarity
than cross-protocol comparisons (AS versus CNS or AS ver-
sus MCNS), indicating that the segment-generation protocol
is a major source of variability. Focal genes are more concor-
dant than focal terms, consistent with additional variability
introduced by term-level aggregation. Despite these trends, ab-
solute concordance across different protocol-workflow pairs
within the same dataset is often low, demonstrating that focal
annotations are sensitive not only to bin size (Supplementary
Fig. S1A) but also to upstream protocol and workflow
choices.

Importantly, overlap counts reveal that many biologically
plausible events recur across pairs even when Jaccard similar-
ity is low. For example, in CNS-versus-CNS comparisons the
median number of shared focal genes per dataset is substan-
tial (dozens to hundreds), and even cross-protocol compar-
isons retain a nontrivial shared core; focal terms also exhibit
measurable overlap (Supplementary Fig. S2B).

G20z JaquienoN 0z uo 1s8nb Aq €0162€8/2bz LIedb/Ieu/S60 L 0L /10p/8|o1lB-80uBAPE/IBU/WOo dNo"olWepeo.//:sdiy Wolj papeojumod


https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data

These findings motivate CNAScope’s consensus definition:
consensus genes are the intersection of focal genes across all
available protocol-workflow profiles within a dataset, and
consensus terms are pathways enriched by these consensus
genes (see the “Materials and methods” section). This de-
sign prioritizes robustness—retaining only those focal events
that replicate across heterogeneous inputs—thereby mitigat-
ing protocol/workflow sensitivity while preserving biologi-
cally meaningful signals.

Next, we analyzed CNAScope-annotated consensus events
across 56 bulk DNA GDC datasets. In total, 34 datasets con-
tain amplified or deleted consensus genes agreed upon by two
to six protocol-workflow combinations (Fig. 3A).

The number of deleted consensus genes (hundreds to thou-
sands) exceeds the number of amplified consensus genes (tens
to hundreds) (Fig. 3B). This is plausible because deletions
are often more widespread and recurrent—capturing large
regions enriched for tumor suppressors and common fragile
sites—whereas amplifications typically occur in fewer, more
focal hotspots around oncogenes.

Among the 34 datasets, 30 showed significant enrich-
ment (FDR P-values <.01) of amplified or deleted con-
sensus terms across MSigDB collections (Hallmark, C2-
KEGG, C4-Computational, C5-GO BP, C6-Oncogenic, C7-
Immunologic). For clarity, we focused on the top five KEGG
terms for amplification and deletion separately. In Fig. 3C, am-
plification enrichments cluster in growth and signaling pro-
grams (PI3K, EGFR, RAS) along with transcriptional con-
trol and cell-cycle checkpoints. This aligns with oncogene-
driven amplicons that promote proliferation [59, 60]. Several
datasets exhibit moderate-to-high GeneRatios with strong sig-
nificance. For deletions, enrichments trend toward immune-
related pathways (e.g. antigen processing and presentation)
and apoptosis/cell-death signaling, consistent with loss of
tumor-suppressive and immune-modulatory genes [61]. Al-
though fewer KEGG terms are highlighted per dataset than for
amplifications, some deletion signals show high significance
and sizable GeneRatios.

Moreover, we externally validated CNAScope’s focal and
consensus annotations using two orthogonal resources—
cBioPortal [15] (gene-level CNA frequencies) and Pro-
genetix [19] (segment-level CNA frequencies). We analyzed 33
GDC-sourced TCGA datasets shared across CNAScope, Pro-
genetix, and cBioPortal (see Supplementary Results 2.2 and
Supplementary Fig. S3). Together, these analyses show strong
external concordance—especially for amplifications—while
also highlighting CNAScope-unique, literature-supported fo-
cal and consensus events, particularly deletions that may be
underrepresented in gene-level frequency resources.

Discussion

In this study, we present CNAScope, an online database for
comprehensive annotation and visualization of cancer CNAs.
Compared with existing CNA databases—such as cBioPor-
tal [15], COSMIC [16], DGV [17], GDC [18], HSCGD [21],
Progenetix [19], and scTML [22]—CNAScope offers several
unique advantages (Table 1):

(i) Extensive cancer CNA collection. CNAScope offers a
truly comprehensive, cancer-centric, and multi-modal
resource with largest cancer data size. It holds CNA
data from five data modalities: bulk DNA, single-

cell DNA, spatial DNA, single-cell RNA, and spatial
DNA. In total, the resource spans 810 datasets, 174
464 samples, 3 018 672 single cells, 764 232 spatial
cells/spots, and 3 946 319 associated metadata. The
breadth of data modalities and the overall data volume
compare favorably with existing databases (Table 1)—
which may focus on common and non-pathological
variation (DGV [17]), only bulk DNA focus (cBioPor-
tal [15], COSMIC [16], GDC [18], Progenetix [19]),
only single-cell focus (HSCGD [21]), transcriptome-
derived CNAs (scTML [22]), or only gene-level CNA
calls (COSMIC [16], scTML [22]).

(ii) Systematic observational and functional annotation.
CNAScope uniquely combines observational and func-
tional annotation. CNAScope applies phylogenetic
inference, observation clustering, and dimension re-
duction to reveal tumor subtypes, clonal structure,
and intra-/inter-tumor heterogeneity at both bulk and
single-cell levels, whereas existing databases provide
no or partial support for these observational annota-
tions (Table 1). Critically, CNAScope supports func-
tional annotation that identifies focal CNAs/genes
within individual profiles and consensus CNAs/genes
across profiles within the same dataset to mitigate
biases from heterogeneous data sources. In addition,
CNAScope systematically maps these genes to path-
way terms using up-to-date reference databases such
as Ensembl [41], MSigDB [43], KEGG [44], and GO
[45]. In contrast, other CNA platforms (Table 1) rarely
support focal or consensus calling. cBioPortal and Pro-
genetix offer only limited functionality, primarily re-
porting CNA frequencies (see Supplementary Figure 1.
2 for details).

(iii) Code-free online annotation CNAScope uniquely sup-
ports on-the-fly annotation directly into its web inter-
face, allowing users to upload single or multiple CNA
data and perform basic and consensus CNA annota-
tion discovery without leaving the platform—a feature
rarely offered by existing databases (Table 1).

(iv) Comprehensive  interactive  visualization.  In
CNAScope, visualization panels are highly inter-
active, offering informative tooltips, adjustable plot
sizing, zooming, highlighting, and export options,
and they are configurable via a comprehensive editor
for customized annotation choices. However, existing
cancer-focused platforms provide only a partial subset
of these functionalities (Table 1).

Next, we outline the concerns we encountered in collect-
ing, curating, and annotating CNA data, describe our planned
solutions, and call for the community to address these issues
together.

We acknowledge the data heterogeneity, systematic biases,
and batch effects inherent to CNA calling across datasets.
In CNAScope, we use per-dataset CNA profiles from online
sources that have already applied widely adopted callers with
best practices [4, 6, 40, 62—-64] (see https://cna.fengslab.com/
database), or we derive CNAs from single-cell and spatial
transcriptomic data using inferCNVpy [8] (see Supplementary
Methods 1.1). These standardized pipelines incorporate nor-
malization and statistical procedures designed to address
batch effects and platform-specific biases when converting
raw read counts into ACN, ACN estimate, or log,-ratio
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Figure 3. Analysis of consensus CNAs annotated by CNAScope across GDC bulk DNA sequencing protocols and computational workflows. (A) Dot plot
of consensus availability: each filled point indicates that focal amplification and deletion results exist for a given protocol-workflow within each dataset.
(B) Bar plot of consensus burden: counts of amplified and deleted consensus genes per dataset. (C) KEGG consensus terms: for each dataset, the top
five KEGG terms for amplifications and deletions. Point size = GeneRatio (fraction of consensus genes in that term). Color = —logy9(FDR), with higher
values (yellow/green) indicating stronger significance and lower values (purple/blue) indicating weaker significance. Available protocols: allele-specific
(AS), copy-number segment (CNS), and masked copy-number segment (MCNS). Available workflows: ascat2, ascat3, ascatNGS, DNAcopy, and
GATK4_CNV. AMP: amplification. DEL: deletion. FDR: false discovery rate.
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Table 1. Comparison of CNAScope with existing CNA databases

Feature CNAScope  cBioPortal COSMIC

(2025) (2025) (2024)

DGV GDC HSGCD Progenetix scTML
(2020) (2021) (2025) (2021) (2024)

Cancer Focus v v v
Cancer Data Size
# of datasets 810 303 54
# of samples 174 464 195 825 13753
# of cells 3018672 - -
# of spots 764 232 - -
Data Modality
bulkDNA
scDNA
spaDNA
scRNA
spaRNA
CN Valuation Scale
Absolute copy number
(ACN)
ACN Estimate
Log2 Ratio
CN Locus Resolution
Segment-Level BED
Bin-Level Matrices
Gene-Level Matrices
Metadata Annotation
Search Panel
Observational Annotation
Phylogeny Inference
Observation Clustering
Dimension Reduction
Functional Annotation
Gene-Level CNA
Term-Level CNA
High Variable
Bin/Gene/Term
Spatial Variable
Bin/Gene/Term
Focal CNA
Focal Gene
Focal Term
Consensus CNA
Consensus Gene
Consensus Term
Online Workflow
Interactive Visualization
Customized Panel
Informative Tooltips
Adjustable Plot Size
Zoomable
Downloadable Figure
Downloadable Data

v v
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v : Feature supported, -: Not applicable, L: Limited functionality. Detailed explanation is provided in Supplementary Methods 1.2.

profiles. Interpretation of ACN, ACN estimate, and log, ra-
tio follows established community conventions: amplification
(ACN [estimate] >2; log, ratio >0), neutrality (ACN [esti-
mate] = 2; log, ratio = 0), and deletion (ACN [estimate] <2;
log, ratio <0). Accordingly, switching between these scales
does not change the underlying biological interpretation. To-
gether, these practices help ensure that most systematic biases
and batch effects are mitigated prior to CNAScope’s observa-
tional and functional annotations so that the remaining vari-
ability in raw CNA profiles reflects underlying intra- and inter-
tumor heterogeneity.

In the CNAScope annotation step, we preserve the original
value scale unless a downstream analysis explicitly requires
a different one. Because raw CNA profiles in CNAScope
vary in locus resolution (segment-level BED, bin-level, or

gene-level matrices) and focal annotations are highly sensi-
tive to resolution, CNAScope retains the native resolution
whenever performing focal annotation to avoid information
loss. Observation-level annotations, however, require a ma-
trix format. When source CNA data are not provided as ma-
trices (e.g. bulk DNA GDC data), CNAScope curates and
converts them into matrices with three available bin sizes
(200 kb, 500 kb, and 5 Mb). Benchmark performance for
these options is provided in Supplementary Results 2.1 and
Supplementary Fig. S2, enabling users to choose their pre-
ferred granularity.

GISTIC2 is designed for bulk, segment-level datasets
with independent samples. Our benchmarking shows that
its focal calls are sensitive to bin size and to biases aris-
ing from sequencing protocols and computational work-
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flows (Supplementary Results 2.1, Results-Case Study, and
Supplementary Figs S1 and S2). Thus, for bulk DNA datasets
that provide only raw gene-level or bin-level CNA data, and
for single-cell or spatial datasets—where observations are cells
or spots from a single patient—the rationale for dataset-level
GISTIC2 focal discovery is weak. To our knowledge, no ded-
icated tools currently support multi-sample focal event detec-
tion in single-cell or spatial settings or gene-level focal calling.
Accordingly, CNAScope does not report focal and consensus
annotations for gene-level, single-cell, or spatial data. We call
for methods tailored to focal CNA detection in these data for-
mats, which would enable CNAScope to incorporate such an-
notations in future releases. Moreover, CNAScope provides
consensus calling to identify focal CNAs/genes/terms across
multiple profiles within a dataset, mitigating biases from het-
erogeneous data sources.

For ST data, CNAScope presently uses the single—cell tool
inferCNVpy [8] to derive spot-level CNA profiles because
spatially aware CNA inference for ST is still immature. Spa-
tiallnferCNV [10] relies on the inferCNV core algorithm
and primarily projects inferred CNAs onto tissue coordi-
nates without integrating spatial information during infer-
ence. STARCH [6S5] incorporates spatial context but outputs
only categorical copy-number states (e.g. amplification, dele-
tion), not full CN profiles. CalicoST [66] infers allele-specific
CNAs with spatial context but requires BAM files and can-
not operate directly on expression data. We acknowledge
this limitation and strongly encourage the development of
methods that infer CNAs directly from ST expression, which
would enable truly spatially resolved CNA analyses in future
CNAScope updates.

CNAScope collects data from five modalities—bulk DNA,
scDNA, spatial DNA, scRNA, and spatial RNA—but sample-
or cell-level overlap across modalities is limited. We plan to
recruit cross-modality CNA profiles derived from the same
samples or cells to further enhance CNAScope’s richness and
comparability in further releases.

Acknowledgements

Author contributions: Xikang Feng (Conceptualization, Data
curation, Formal analysis, Funding acquisition, Methodol-
ogy, Software, Supervision, Writing—review & editing), Jieyi
Zheng (Data curation, Formal analysis, Software, Writing—
review & editing), Sisi Peng (Data curation, Formal anal-
ysis, Writing—review & editing), Anna Jiang (Data cura-
tion, Formal analysis, Writing—review & editing), Ka Ho Ng
(Data curation), Chengshang Lyu (Software), Qiangguo Jin
(Funding acquisition, Investigation, Supervision), and Lingxi
Chen (Conceptualization, Data curation, Formal analysis,
Funding acquisition, Methodology, Supervision, Visualiza-
tion, Writing—original draft).

Supplementary data
Supplementary data is available at NAR online.

Conflicts of interest

The authors declare no conflicts of interest.

Funding

We express our gratitude for the support provided
by the National Natural Science Foundation of China
(No. 32300527; No. 32400519; No. 62572401), the Guang-
dong Basic and Applied Basic Research Foundation (No.
2022A1515110784), the Research Grants Council of Hong
Kong (No. 21200425), the CityUHK Start-Up Grant (No.
9610687), and the Basic Research Programs of Taicang, 2024
(No. TC2024]JC43). Funding to pay the Open Access publi-
cation charges for this article was provided by the National
Natural Science Foundation of China (No. 32300527).

Data availability
All the data are freely available at https://cna.fengslab.com/.

References

1. Steele CD, Abbasi A, Islam SA et al. Signatures of copy number
alterations in human cancer. Nature 2022;606:984-91.
https://doi.org/10.1038/s41586-022-04738-6

2. Hastings PJ, Lupski JR, Rosenberg SM et al. Mechanisms of
change in gene copy number. Nat Rev Genet 2009;10:551-64.
https://doi.org/10.1038/nrg2593

3. Navin N, Krasnitz A, Rodgers L et al. Inferring tumor progression
from genomic heterogeneity. Genome Res 2010;20:68-80.
https://doi.org/10.1101/gr.099622.109

4. Raine KM, Van Loo P, Wedge DC et al. ascatNgs: identifying
somatically acquired copy-number alterations from whole-genome
sequencing data. Curr Protoc Bioinform 2016;56:15-9.
https://doi.org/10.1002/cpbi. 17

5. Jiang Y, Oldridge DA, Diskin SJ et al. CODEX: a normalization
and copy number variation detection method for whole exome
sequencing. Nucleic Acids Res 2015;43:¢39.
https://doi.org/10.1093/nar/gku1363

6. Garvin T, Aboukhalil R, Kendall J ez al. Interactive analysis and
assessment of single-cell copy-number variations. Nat Methods
2015;12:1058. https://doi.org/10.1038/nmeth.3578

7. Andor N, Lau BT, Catalanotti C et al. Joint single cell DNA-seq
and RNA-seq of gastric cancer cell lines reveals rules of in vitro
evolution. NAR Genom Bioinform 2020;2:1qaa016.
https://doi.org/10.1093/nargab/lqaa016

8. Puram SV, Tirosh I, Parikh AS et al. Single-cell transcriptomic
analysis of primary and metastatic tumor ecosystems in head and
neck cancer. Cell 2017;171:1611-24.
https://doi.org/10.1016/j.cell.2017.10.044

9. Zhao T, Chiang ZD, Morriss JW et al. Spatial genomics enables
multi-modal study of clonal heterogeneity in tissues. Nature
2022;601:85-91. https://doi.org/10.1038/s41586-021-04217-4

10. Erickson A, He M, Berglund E et al. Spatially resolved clonal copy
number alterations in benign and malignant tissue. Nature
2022;608:360-7. https://doi.org/10.1038/s41586-022-05023-2

11. Navin N, Kendall J, Troge J et al. Tumour evolution inferred by
single-cell sequencing. Nature 2011;472:90.
https://doi.org/10.1038/nature09807

12. Minussi DC, Nicholson MD, Ye H et al. Breast tumours maintain
a reservoir of subclonal diversity during expansion. Nature
2021;592:302-8. https://doi.org/10.1038/s41586-021-03357-x

13. Hieronymus H, Schultz N, Gopalan A et al. Copy number
alteration burden predicts prostate cancer relapse. Proc Natl Acad
Sci 2014;111:11139-44.
https://doi.org/10.1073/pnas. 1411446111

14. Chen L, Qing Y, Li R et al. Somatic variant analysis suite: copy
number variation clonal visualization online platform for
large-scale single-cell genomics. Brief Bioinform
2022;23:bbab452. https://doi.org/10.1093/bib/bbab452

GZ0zZ 1equisnoN 0z uo 1sanb Aq £0162£8/21Z LiexB/ieu/ce0L 0L /10p/a[o1e-aoueApe/ieu/wod dno-olwapede//:sdijy woly papeojumoq


https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://cna.fengslab.com/
https://doi.org/10.1038/s41586-022-04738-6
https://doi.org/10.1038/nrg2593
https://doi.org/10.1101/gr.099622.109
https://doi.org/10.1002/cpbi.17
https://doi.org/10.1093/nar/gku1363
https://doi.org/10.1038/nmeth.3578
https://doi.org/10.1093/nargab/lqaa016
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1038/s41586-021-04217-4
https://doi.org/10.1038/s41586-022-05023-2
https://doi.org/10.1038/nature09807
https://doi.org/10.1038/s41586-021-03357-x
https://doi.org/10.1073/pnas.1411446111
https://doi.org/10.1093/bib/bbab452

15.

16.

17.

18.

19.

20.

21.

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

De Bruijn I, Kundra R, Mastrogiacomo B et al. Analysis and
visualization of longitudinal genomic and clinical data from the
AACR project GENIE biopharma collaborative in cBioPortal.
Cancer Res 2023;83:3861-7.
https://doi.org/10.1158/0008-5472.CAN-23-0816

Sondka Z, Dhir NB, Carvalho-Silva D et al. COSMIC: a curated
database of somatic variants and clinical data for cancer. Nucleic
Acids Res 2024;52:D1210-7. https://doi.org/10.1093/nar/gkad986
MacDonald JR, Ziman R, Yuen RK ez al. The Database of
Genomic Variants: a curated collection of structural variation in
the human genome. Nucleic Acids Res 2014;42:D986-92.
https://doi.org/10.1093/nar/gkt958

Zhang Z, Hernandez K, Savage ] et al. Uniform genomic data
analysis in the NCI Genomic Data Commons. Nat Commun
2021;12:1226. https://doi.org/10.1038/s41467-021-21254-9
Huang Q, Carrio-Cordo P, Gao B et al. The Progenetix
oncogenomic resource in 2021. Database 2021;2021:baab043.
https://doi.org/10.1093/database/baab043

Pan Q, Liu Y], Bai XF et al. VARAdb: a comprehensive variation
annotation database for human. Nucleic Acids Res
2021;49:D1431-44. https://doi.org/10.1093/nar/gkaa922

Fu J,He S, Yang Y et al. HSCGD: a comprehensive database of
single-cell whole-genome data and metadata. Nucleic Acids Res
2025;53:D1029-38. https://doi.org/10.1093/nar/gkae971

.LiH, Ma T, Zhao Z et al. scTML: a pan-cancer single-cell

landscape of multiple mutation types. Nucleic Acids Res
2025;53:D1547-56. https://doi.org/10.1093/nar/gkae898

Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository.
Nucleic Acids Res 2002;30:207-10.
https://doi.org/10.1093/nar/30.1.207

Tarhan L, Bistline J, Chang ] ez al. Single Cell Portal: an interactive
home for single-cell genomics data. bioRxiv,
https://doi.org/10.1101/2023.07.13.548886, 17 July 2023,
preprint: not peer reviewed.

The Cancer Genome Atlas Research Network. Comprehensive
genomic characterization defines human glioblastoma genes and
core pathways. Nature 2008;455:1061-8.
https://doi.org/10.1038/nature07385

Downing JR, Wilson RK, Zhang ] et al. The pediatric cancer
genome project. Nat Genet 2012;44:619-22.
https://doi.org/10.1038/ng.2287

Carter SL, Cibulskis K, Helman E ez al. Absolute quantification of
somatic DNA alterations in human cancer. Nat Biotechnol
2012;30:413-21. https://doi.org/10.1038/nbt.2203

Xi R, Hadjipanayis AG, Luquette L] et al. Copy number variation
detection in whole-genome sequencing data using the Bayesian
information criterion. Proc Natl Acad Sci 2011;108:E1128-36.
https://doi.org/10.1073/pnas. 1110574108

Virtanen P, Gommers R, Oliphant TE ef al. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat Methods
2020;17:261-72. https://doi.org/10.1038/s41592-019-0686-2
Ma S, Dai Y. Principal component analysis based methods in
bioinformatics studies. Brief Bioinform 2011;12:714-22.
https://doi.org/10.1093/bib/bbq090

Hyvirinen A, Oja E. Independent component analysis: algorithms
and applications. Neural Networks 2000;13:411-30.
https://doi.org/10.1016/S0893-6080(00)00026-5

Lee DD, Seung HS. Algorithms for non-negative matrix
factorization. In: Proceedings of the 14th International Conference
on Neural Information Processing Systems (NIPS’00). Cambridge,
MA, USA: MIT Press, 2000, 535-541.
https://dl.acm.org/d0i/10.5555/3008751.3008829

Becht E, McInnes L, Healy ] et al. Dimensionality reduction for
visualizing single-cell data using UMAP. Nat Biotechnol
2019;37:38-44. https://doi.org/10.1038/nbt.4314

Maaten Lvd, Hinton G. Visualizing data using t-SNE. | Mach
Learn Res 2008;9:2579-605.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

"

Moon KR, van Dijk D, Wang Z et al. Visualizing structure and
transitions in high-dimensional biological data. Nat Biotechnol
2019;37:1482-92.

Shah SP, Xuan X, DeLeeuw R] et al. Integrating copy number
polymorphisms into array CGH analysis using a robust HMM.
Bioinformatics 2006;22:¢431-9.
https://doi.org/10.1093/bioinformatics/btl238

Bakker B, Taudt A, Belderbos ME et al. Single-cell sequencing
reveals karyotype heterogeneity in murine and human
malignancies. Genome Biol 2016;17:115.
https://doi.org/10.1186/s13059-016-0971-7

Wang R, Lin DY, Jiang Y. SCOPE: a normalization and
copy-number estimation method for single-cell DNA sequencing.
Cell Syst 2020;10:445-52.
https://doi.org/10.1016/j.cels.2020.03.005

Zaccaria S, Raphael BJ. Characterizing allele-and
haplotype-specific copy numbers in single cells with CHISEL. Nat
Biotechnol 2021;39:207-14.
https://doi.org/10.1038/s41587-020-0661-6

Talevich E, Shain AH, Botton T et al. CNVKkit: genome-wide copy
number detection and visualization from targeted DNA
sequencing. PLoS Comput Biol 2016;12:e1004873.
https://doi.org/10.1371/journal.pcbi.1004873

Harrison PW, Amode MR, Austine-Orimoloye O et al. Ensembl
2024. Nucleic Acids Res 2024;52:D891-9.
https://doi.org/10.1093/nar/gkad 1049

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 2010;26:841-2.
https://doi.org/10.1093/bioinformatics/btq033

Liberzon A, Subramanian A, Pinchback R et al. Molecular
signatures database (MSigDB) 3.0. Bioinformatics
2011;27:1739-40. https://doi.org/10.1093/bioinformatics/btr260
Kanehisa M, Furumichi M, Tanabe M et al. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res 2017;45:D353-61.
https://doi.org/10.1093/nar/gkw1092

Consortium GO. The Gene Ontology (GO) database and
informatics resource. Nucleic Acids Res 2004;32:D258-61.
https://doi.org/10.1093/nar/gkh036

Van Dyk E, Hoogstraat M, Ten Hoeve | et al. RUBIC identifies
driver genes by detecting recurrent DNA copy number breaks. Nat
Commun 2016;7:12159. https://doi.org/10.1038/ncomms12159
Mermel CH, Schumacher SE, Hill B et al. GISTIC2.0 facilitates
sensitive and confident localization of the targets of focal somatic
copy-number alteration in human cancers. Genome Biol
2011;12:R41. https://doi.org/10.1186/gb-2011-12-4-r41

Wang X, Li X, Cheng Y et al. Copy number alterations detected by
whole-exome and whole-genome sequencing of esophageal
adenocarcinoma. Hum Genom 2015;9:22.
https://doi.org/10.1186/s40246-015-0044-0

Fang Z, Liu X, Peltz G. GSEApy: a comprehensive package for
performing gene set enrichment analysis in Python. Bioinformatics
2023;39:btac757. https://doi.org/10.1093/bioinformatics/btac757
Tonsing-Carter E, Agarwal R, Kyi CW ef al. Human cancer
models initiative (HCMI): A community resource of
next-generation cancer models and associated data. Cancer Res
2023;83:4681. https://doi.org/10.1158/1538-7445.AM2023-4681
Zhang J, Bajari R, Andric D et al. The international cancer genome
consortium data portal. Nat Biotechnol 2019;37:367-9.
https://doi.org/10.1038/s41587-019-0055-9

Gautier L, Cope L, Bolstad BM et al. affy—analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics 2004;20:307-15.
https://doi.org/10.1093/bioinformatics/btg405

Quail MA, Smith M, Coupland P et al. A tale of three next
generation sequencing platforms: comparison of Ion Torrent,
Pacific Biosciences and Illumina MiSeq sequencers. BMC
Genomics 2012;13:341.
https://doi.org/10.1186/1471-2164-13-341

GZ0zZ 1equisnoN 0z uo 1sanb Aq £0162£8/21Z LiexB/ieu/ce0L 0L /10p/a[o1e-aoueApe/ieu/wod dno-olwapede//:sdijy woly papeojumoq


https://doi.org/10.1158/0008-5472.CAN-23-0816
https://doi.org/10.1093/nar/gkad986
https://doi.org/10.1093/nar/gkt958
https://doi.org/10.1038/s41467-021-21254-9
https://doi.org/10.1093/database/baab043
https://doi.org/10.1093/nar/gkaa922
https://doi.org/10.1093/nar/gkae971
https://doi.org/10.1093/nar/gkae898
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1038/nature07385
https://doi.org/10.1038/ng.2287
https://doi.org/10.1038/nbt.2203
https://doi.org/10.1073/pnas.1110574108
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1093/bib/bbq090
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1093/bioinformatics/btl238
https://doi.org/10.1186/s13059-016-0971-7
https://doi.org/10.1016/j.cels.2020.03.005
https://doi.org/10.1038/s41587-020-0661-6
https://doi.org/10.1371/journal.pcbi.1004873
https://doi.org/10.1093/nar/gkad1049
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkh036
https://doi.org/10.1038/ncomms12159
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1186/s40246-015-0044-0
https://doi.org/10.1093/bioinformatics/btac757
https://doi.org/10.1158/1538-7445.AM2023-4681
https://doi.org/10.1038/s41587-019-0055-9
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1186/1471-2164-13-341

12

54. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling

of single-cell RNA-seq in the past decade. Nat Protoc
2018;13:599-604. https://doi.org/10.1038/nprot.2017.149

55. Picelli S, Faridani OR, Bjorklund AK et al. Full-length RNA-seq
from single cells using Smart-seq2. Nat Protoc 2014;9:171-81.
https://doi.org/10.1038/nprot.2014.006

56. Rao A, Barkley D, Franga GS et al. Exploring tissue architecture
using spatial transcriptomics. Nature 2021;596:211-20.
https://doi.org/10.1038/s41586-021-03634-9

57. Janesick A, Shelansky R, Gottscho AD et al. High resolution
mapping of the tumor microenvironment using integrated
single-cell, spatial and i situ analysis. Nat Commun
2023;14:8353. https://doi.org/10.1038/s41467-023-43458-x

58. Williams CG, Engel JA, Soon MS et al. Studying lymphocyte

differentiation in the spleen via spatial transcriptomics. | Immunol

2021;206:98-55.
https://doi.org/10.4049/jimmunol.206.Supp.98.55

59. Ponsioen B, Post JB, Buissant des Amorie JR et al. Quantifying
single-cell ERK dynamics in colorectal cancer organoids reveals
EGFR as an amplifier of oncogenic MAPK pathway signalling.
Nat Cell Biol 2021;23:377-90.
https://doi.org/10.1038/s41556-021-00654-5

60. Wang T, Yu H, Hughes NW ez al. Gene essentiality profiling
reveals gene networks and synthetic lethal interactions with

61.

62.

63.

64.

65.

66.

oncogenic Ras. Cell 2017;168:890-903.
https://doi.org/10.1016/j.cell.2017.01.013

Huang J, Chen W, Jie Z et al. Comprehensive analysis of immune
implications and prognostic value of SPI1 in gastric cancer. Front
Oncol 2022;12:820568.
https://doi.org/10.3389/fonc.2022.820568

Van Loo P, Nordgard SH, Lingjeerde OC er al. Allele-specific copy
number analysis of tumors. Proc Natl Acad Sci
2010;107:16910-5. https://doi.org/10.1073/pnas. 1009843107
Auwera G, Carneiro M, Hartl C et al. From FastQ Data to
High-Confidence Variant Calls: The Genome Analysis Toolkit Best
Practices Pipeline. Inc, Hoboken. NJ, USA: John Wiley & Sons,
2013.

Shen R, Seshan VE. FACETS: allele-specific copy number and
clonal heterogeneity analysis tool for high-throughput DNA
sequencing. Nucleic Acids Res 2016;44:¢131.
https://doi.org/10.1093/nar/gkw520

Elyanow R, Zeira R, Land M et al. STARCH: copy number and
clone inference from spatial transcriptomics data. Phys Biol
2021;18:035001. https://doi.org/10.1088/1478-3975/abbe99

Ma C, Balaban M, Liu ] et al. Inferring allele-specific copy number
aberrations and tumor phylogeography from spatially resolved
transcriptomics. Nat Methods 2024;21:2239-47.
https://doi.org/10.1038/s41592-024-02438-9

Received: August 18, 2025. Revised: October 7, 2025. Accepted: October 18,2025
© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and
translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact

journals.permissions@oup.com.

GZ0zZ 1equisnoN 0z uo 1sanb Aq £0162£8/21Z LiexB/ieu/ce0L 0L /10p/a[o1e-aoueApe/ieu/wod dno-olwapede//:sdijy woly papeojumoq


https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1038/nprot.2014.006
https://doi.org/10.1038/s41586-021-03634-9
https://doi.org/10.1038/s41467-023-43458-x
https://doi.org/10.4049/jimmunol.206.Supp.98.55
https://doi.org/10.1038/s41556-021-00654-5
https://doi.org/10.1016/j.cell.2017.01.013
https://doi.org/10.3389/fonc.2022.820568
https://doi.org/10.1073/pnas.1009843107
https://doi.org/10.1093/nar/gkw520
https://doi.org/10.1088/1478-3975/abbe99
https://doi.org/10.1038/s41592-024-02438-9
https://creativecommons.org/licenses/by-nc/4.0/
mailto:reprints@oup.com
mailto:journals.permissions@oup.com

	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements
	Supplementary data
	Conflicts of interest
	Funding
	Data availability
	References

