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Abstract 

Copy number aberrations (CNAs) are critical drivers of genomic diversity in oncology, where recurrent CNAs frequently underlie tumorigenesis. 
Ho w e v er, e xisting public resources are limited in their somatic CNA specificity, breadth across multiple data modalities, and support for recurrent 
CNAs with online functional annotation and interactive visualization. Here, we present CNAScope ( https:// cna.fengslab.com/ ), a database that 
curates and functionally annotates o v er 3 954 361 CNA profiles and 3 946 319 met adat a from 810 datasets, 174 464 samples, 3 018 672 single 
cells, and 764 232 spatial cells/spots, spanning 77 cancer subtypes from eight data sources and 55 cancer initiatives and instit utions. CNA Scope 
offers downloadable CNA annotations and interactive visualizations at bin, gene, and pathw a y term le v els, including ph ylogenetic inference, 
clustering, dimension reduction, and f ocal/consensus CNA detection. Users can e xplore data through interactiv e heatmaps, ph ylogenetic trees, 
embedding plots, CN charts, and focal/consensus plots, or upload and annotate their own CNAs in real time. In all, with its large curated data 
volume and rich annotation capabilities, CNAScope serves as a vital resource for accelerating cancer research. 
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ntroduction 

opy number aberrations (CNAs)—large-scale somatic gains
nd losses of chromosomal segments—drive genomic di-
ersity and play a pivotal role in cancer development [ 1 ].
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CNAs can disrupt gene dosage, perturb regulatory net-
works, and alter malignant transformation [ 1 , 2 ]. Advances
in high-throughput genomics now enable systematic CNA
detection across diverse experimental protocols, including
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microarrays [ 3 ], bulk whole-genome/exome sequencing
(WGS [ 4 ], WES [ 5 ]), single-cell DNA/RNA sequencing
(scDNA-seq [ 6 , 7 ], scRNA-seq [ 8 ]), spatial DNA sequenc-
ing [ 9 ], and spatial transcriptomics (ST) [ 10 ]. These tech-
nologies allow detailed profiling of CNA homogeneity and
heterogeneity at the level of single cells, spatial cells/spots,
and samples. 

Interpreting CNA data requires effective annotation and vi-
sualization from two complementary perspectives: observa-
tion and function. The observational perspective focuses on
individual samples, single cells, or spatial cells/spots, allowing
the exploration of intra- and inter-group heterogeneity, such
as differences among cancer subtypes or tumor clones. Ana-
lytical approaches—phylogenetic inference, clustering, and di-
mension reduction—help reveal these relationships [ 11 , 12 ].
The functional perspective maps CNAs to genes and path-
way terms, enabling interpretation of their biological signif-
icance [ 2 ]. Systematic annotation across multiple CNA pro-
files identifies recurrent aberrations, which are critical for pin-
pointing driver events and assessing clinical relevance [ 13 ].
Visualizations such as CNA heatmaps, phylogenetic trees, em-
bedding maps, CN plots, focal CNA plots, and consensus gene
plots are indispensable for the intuitive exploration and inter-
pretation of CNA patterns at bin, gene, and term levels [ 14 ].
These tools bridge the gap between observation-level varia-
tion and functional impact, supporting comprehensive biolog-
ical insight and clinical translation. 

While several online portals and databases exist, they face
notable limitations: (i) Some resources primarily focus on
germline aberrations or capture somatic aberrations relevant
to cancer but do not specifically highlight CNAs [ 15–20 ]. (ii)
Most databases are limited to a single data modality—either
bulk DNA [ 15 , 16 , 18 , 19 ], single-cell [ 7 , 21 ], or transcrip-
tomics [ 22 ]. (iii) Advanced annotation features like focal and
consensus event detection are rarely highlighted [ 7 , 16 , 18 , 21 ,
22 ]. 

To address these limitations, we present CNAScope ( https:
// cna.fengslab.com/ ), a database that collects, curates, and an-
notates bulk, single-cell, and spatial CNA profiles and meta-
data across 810 datasets, 174 464 samples, 3 018 672 sin-
gle cells, and 764 232 spatial cells/spots for 77 cancer sub-
types. Drawing on eight online resources, CNAScope encom-
passes 55 cancer genomics initiatives and institutions, holding
data generated by 12 sequencing protocols and 34 platforms.
We curated CNA profiles derived from 32 computational
workflows. CNAScope provides comprehensive, download-
able annotations for both CNA profiles and metadata, includ-
ing phylogenetic trees, observation clusters, gene- and term-
level CNAs, focal CNAs/genes/terms from single CNA profile,
and consensus CNAs/genes/terms across multiple CNA pro-
files from the same dataset. Furthermore, CNAScope features
interactive visual tools for database and annotation result ex-
ploration, as well as streamlined online annotation workflows
for users’ newly generated CNA profiles, supporting both ex-
ploratory and hypothesis-driven research. 

Materials and methods 

Dataset collection 

We systematically searched public repositories using the
keywords “cancer ,” “tumor ,” and “copy number aberra-
tion/variation” to identify relevant CNA datasets. Our col-
lection spanned next-generation sequencing data—including 
both bulk WGS and WES—as well as probe-based microar- 
rays. Following careful manual curation, quality control, fil- 
tering, and subdivision, we compiled CNA data from three 
resources: the cBioPortal [ 15 ], COSMIC [ 16 ], and GDC Por- 
tal [ 18 ]. Beyond bulk DNA, our collection was further en- 
hanced by incorporating DNA and RNA data from published 

single-cell and spatially resolved datasets, including resources 
like HSCGD [ 21 ], scTML [ 22 ], 10x Genomics [ 7 ], NCBI 
GEO [ 23 ], and Broad SCP [ 24 ]. 

Detailed procedures for data download, processing, and 

quality control are described in Supplementary Methods 1.1. 

Metadata curation 

We manually curated cancer subtype annotations for 
all datasets. Our classification prioritized alignment with 

TCGA [ 25 ] and TARGET [ 26 ] subtype definitions (e.g. lung 
adenocarcinoma [LUAD] and lung squamous cell carcinoma 
[LUSC]) by reviewing the original disease descriptions, pri- 
mary site, and metastatic status. When a dataset could not 
be directly mapped to a specific subtype, we assigned it to a 
broader cancer-type category (e.g. lung cancer). 

Bulk datasets were annotated at the patient-sample level.
Two primary clinical endpoints were recorded: overall sur- 
vival (OS; time from diagnosis to death or last follow- 
up) and progression-free survival (PFS; time to recur- 
rence/relapse/progression or last follow-up). Additional clin- 
ical information, such as tumor stage, grade, ethnicity, race,
gender, and age, was collected when available. For single-cell 
and spatial datasets, observations were annotated as single 
cells or spatial cells/spots, including cell type, CNA confidence,
donor identity, and malignancy status. 

All metadata were independently reviewed by at least three 
authors to ensure accuracy. The finalized version is available 
at https:// cna.fengslab.com/ database . 

Valuation scales and locus resolutions in raw CNA 

data 

The collected raw CNA data from different sources vary in 

both valuation scale and locus resolution due to heteroge- 
neous data modalities, sequencing protocols, and computa- 
tional workflows. 

We observe three valuation scales in raw CNA data: (i) ab- 
solute copy number (ACN), (ii) ACN estimate, and (iii) log 2 
ratio. ACN denotes the integer number of copies of a specific 
locus per cancer cell [ 27 ]. By convention: 0 means homozy- 
gous deletion, 1 is loss of heterozygosity, 2 refers to diploid,
and > 2 indicates amplifications. Estimated ACN refers to 

non-integer, floating-point values resulting from CNA infer- 
ence. Such estimates arise due to normal-cell admixture (pu- 
rity < 1), subclonality, and measurement noise [ 27 ]. In this 
work, we call these fractional values “A CN estimates. ” Log 2 
ratio is a widely used representation for CNA data from se- 
quencing and microarrays. It is centered at 0 (neutral), with 

gains > 0 and losses < 0, providing a symmetric scale relative 
to the normal state [ 28 ]. 

We encounter three raw CNA locus resolutions: (i) 
segment-level BED, (ii) bin-level matrices, and (iii) gene-level 
matrices. BED-formatted segment calls (per observation), as in 

GDC [ 18 ] bulk DNA data, provide sample-specific CNA seg- 
ments with unique breakpoints. Segmentation is not aligned 

across samples within a dataset, reflecting both inter-tumor 

https://cna.fengslab.com/
https://cna.fengslab.com/database
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eterogeneity and per-sample calling. In contrast, matrix-
ormatted CNA data from other sources provides dataset-
ide, aligned loci. Bin-level matrices use a common binning

cheme across all observations via joint CNA calling with
xed genomic bins, thereby aligning loci within a dataset
though not necessarily across datasets that use different bin
ets). Gene-level matrices report CNA on a shared gene index,
ielding consistent loci within a dataset (though not necessar-
ly across datasets that use different gene references). 

bservational annotation 

NA binning for datasets with segment-level CNA 

NAScope supports three types of downstream observa-
ional annotations: phylogenetic inference, observation clus-
ering, and dimension reduction. Most mainstream tools for
hese tasks expect CNA data in a matrix format (observa-
ions x bins/genes) [ 29–35 ]. Thus, for datasets that only have
egment-level CNAs in BED format, we convert segments into
in-level matrices by tiling the genome into consecutive bins
nd aggregating segment values within each bin. We provide
onversions at 200 kb, 500 kb, and 5 Mb, which are com-
only used bin sizes in standard CNA calling workflows [ 6 ,
6–39 ]. When multiple segments overlap a bin, we com-
ute a length-weighted average of the overlapping CN val-
es. Length-weighted averaging is a standard approach that
eflects the proportional genomic contribution of each seg-
ent and mitigates overemphasis of short intervals [ 40 ]. Be-

ause aggregation can combine heterogeneous segments, orig-
nal ACN values are treated as continuous ACN estimates
ather than integers post-binning, avoiding inappropriate dis-
retization. Similarly, log 2 ratios are retained on the log 2 scale
fter binning. 

In summary, for phylogenetic inference, observation clus-
ering, and dimension reduction, we use raw bin- or gene-
evel CNA matrices when available; otherwise, we derive
in-level matrices from segment-level CNA data. Our quan-
itative assessment of bin-size effects (200 kb, 500 kb, 5

b) shows modest impact on these observational annota-
ions, with moderate but acceptable concordance across res-
lutions, allowing users to choose their preferred granularity
 Supplementary Results 2.1 and Supplementary Fig. 1 ). 

hylogenetic inference 
o analyze phylogenetic relationships among observations
samples, single cells, or spatial cells/spots), we used a two-step
pproach based on the established pipeline [ 14 ]. First, hierar-
hical clustering with a weighted similarity metric was applied
o generate a dendrogram. For 10x Chromium CNV scDNA-
eq data, clustering results were directly extracted from Cell
anger DNA h5 files [ 7 ]; for other datasets, clustering was
erformed using scipy.cluster.hierarchy [ 29 ]. Next,
e present the resulting dendrograms as interactive, zoomable

rees, enabling detailed exploration of phylogenetic structures.

bservation clustering 
NAScope clusters observations using a default cluster num-
er of k = 10 , following the established pipeline [ 14 ]. The
hylogenetic dendrogram is cut to produce k distinct clusters.

imension reduction 

 suite of linear and manifold dimension reduction meth-
ds from the established pipeline [ 14 ], including PCA [ 30 ],
ICA [ 31 ], NMF [ 32 ], UMAP [ 33 ], t-SNE [ 34 ], and
PHATE [ 35 ], is used to generate two-dimensional embeddings
for observations in each dataset. 

Functional annotation 

Gene-level CNA 

For datasets lacking raw gene-level CNA data, we de-
rive gene-level CNAs from the corresponding bin-level
CNA matrices. Gene coordinates were retrieved from
Ensembl [ 41 ] (GRCh37/hg19: https://grch37.rest.ensembl.
org , GRCh38/hg38: https://rest.ensembl.org ). Using BED-
Tools [ 42 ], we identified overlaps between gene regions and
CNA bins. For each gene, the CN value was computed as the
weighted average of CNs from all overlapping bins. This step
was omitted for datasets where raw CNA data were already
provided at the gene level. 

Term-level CNA 

Using the gene-level CNA matrices, we constructed term-level
CNA matrices by averaging the CNs of all genes within
each pathway term. Functional terms were sourced from
MSigDB [ 43 ] ( https:// data.broadinstitute.org/ gsea-msigdb/
msigdb/ release/ 2025.1.Hs/ ), including MSigDB-Hallmark,
MSigDB-C2-KEGG (Kyoto Encyclopedia of Genes and
Genomes [ 44 ]), MSigDB-C4-Computational, MSigDB-C5-
GOBP (Gene Ontology Biological Process [ 45 ]), MSigDB-C6-
Oncogenic, and MSigDB-C7-Immunologic collections. 

Regarding value scales in gene- and term-level CNA data,
after averaging, ACN is reported as an ACN estimate, and
both the ACN estimate and log 2 -ratio retain their original
scales. 

Highly and spatially variable CN Bin/Gene/Term 

In each dataset and at each locus resolution (bin-level, gene-
level, and term-level), we computed the variance of CN for
each locus across observations and selected the 1000 most
variable loci. When spatial coordinates were available, we
built a k –nearest-neighbor spatial weights matrix ( k = 10) us-
ing libpysal . For each preselected highly variable locus, we
calculated Global Moran’s I and its two-tailed p-value (nor-
mal approximation) with esda . Within each resolution, p-
values were adjusted for multiple testing via the Benjamini–
Hochberg FDR procedure ( P < .05) using statsmodels .
The pipeline returns, for each resolution, (i) a table of top-
variance loci and, when spatial coordinates are available, (ii)
a table reporting Moran’s I, raw and adjusted P -values, and a
binary spatial-significance flag. 

Focal CNA/Gene/Term 

Focal CNAs (gains and losses) are recurrent, small-scale CNA
events observed across samples, and focal genes are those
overlapping these focal CNAs [ 46 ]. GISTIC2 [ 47 ], a widely
adopted tool, was designed for bulk datasets with indepen-
dent samples and expects CN values on the log 2 -ratio scale
(microarray by default, with NGS supported after conversion
to log 2 -ratio [ 48 ]). 

As our benchmarking indicates that GISTIC2 is sensitive to
bin size ( Supplementary Results 2.1 and Supplementary Fig.
S1 ), CNAScope runs GISTIC2 on bulk DNA datasets only
when raw segment-level CNA calls (e.g. BED from microarray
or WGS) are available. If needed, CN values x are converted
to log 2 -ratios from ACN or ACN estimates using log 2 (x/ 2) .

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://grch37.rest.ensembl.org
https://rest.ensembl.org
https://data.broadinstitute.org/gsea-msigdb/msigdb/release/2025.1.Hs/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
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For datasets with gene-level matrices—or for single-cell and
spatial datasets where observations are cells or spots from a
single patient—we omit focal annotation. These inputs do not
meet GISTIC2 [ 47 ] assumptions, and dedicated methods for
multi-sample focal detection in single-cell/spatial settings or
for gene-level matrices are currently lacking. 

Next, focally amplified and deleted functional terms are an-
notated via pathway over-representation analysis (ORA) on
the GISTIC2 focal genes, using gseapy.enrich [ 49 ] with
the six MSigDB [ 43 ] collections, as described in the “Term-
Level CNA” subsection. 

Consensus CNA/Gene/Term 

Because focal events are small in scale, their detection, even
within the same bulk DNA dataset, can be sensitive to copy-
number differences arising from different sequencing proto-
cols and computational workflows (Results-Case Study and
Supplementary Fig. S2 ). 

Thus, CNAScope integrates multiple focal calls from the
same dataset to produce a unified set of focal CNAs, genes,
and terms, referred to as consensus CNAs, consensus genes,
and consensus terms. When only a single segment-level
CNA profile is available, when datasets only provide gene-
level CNAs, or for single-cell and spatial datasets, we omit
the consensus step for the reasons outlined in the “Focal
CNA/Gene/Term” subsection. 

The consensus CNAs are called by intersecting focal CNA
segments across protocols/workflows using BEDtools [ 42 ].
Similarly, CNAScope defines consensus genes by intersect-
ing focal genes obtained from different protocols/workflows
within the same bulk DNA dataset. 

Consensus terms are annotated via ORA by enriching con-
sensus genes against six MSigDB [ 43 ] collections, using the
same procedure as for focal terms, as described in the “Focal
CNA/Gene/Term” subsection. 

Platform development 

The CNAScope platform operates on an Ubuntu 24.04 LTS
server, utilizing Nginx, Django, and PostgreSQL for backend
services. The frontend is built with React and Next.js for
efficient UI rendering and application logic, while dynamic
and interactive visualizations are powered by D3.js, which
enables custom data-driven elements such as heatmaps for
CNA matrices (with features like color mapping, zooming,
and tooltips) and hierarchical tree structures for exploring
layered genomic relationships. Comprehensive tutorials are
available on the web interfaces to guide users through their
features and maximize ease of use. 

The release version of CNAScope associated with this
manuscript is Version 1.3 (2025.10.5). We will annually up-
date the ontologies and reference databases to their latest ver-
sions. 

Results 

An extensive curated and annotated pan-cancer 
CNA resource in CNA S cope 

CNAScope hosts a comprehensive collection of curated and
annotated 3 954 361 copy number alteration (CNA) profiles,
accompanied by extensive metadata, from eight major online
resources (Fig. 1 ): cBioPortal [ 15 ], COSMIC [ 16 ], GDC Por-
tal [ 18 ], HSCGD [ 21 ], scTML [ 22 ], 10x Genomics [ 7 ], NCBI
GEO [ 23 ], and Broad SCP [ 24 ]. These datasets are further 
supported by 55 large-scale cancer genomics initiatives, such 

as TCGA [ 25 ], TARGET [ 26 ], HCMI [ 50 ], ICGC [ 51 ], etc.,
as well as leading research institutions, including Memorial 
Sloan Kettering, the Broad Institute, etc. 

In total, CNAScope collects 173 914 samples from 501 

bulk datasets covering 70 cancer subtypes, generated us- 
ing platforms such as Affymetrix microarrays [ 52 ], Illumina 
WGS/WES [ 53 ], etc. At single-cell resolution, CNAScope 
contains data from 2 457 425 cells spanning 27 cancer 
subtypes, derived from 35 scDNA-seq and 192 scRNA-seq 

datasets, utilizing protocols including 10x Chromium CNV 

[ 7 ], 10x Chromium [ 54 ], Smart-Seq2 [ 55 ], etc. Additionally,
the database encompasses 1 325 479 spatial spots across 14 

cancer subtypes, generated with three spatial DNA datasets 
and 79 spatial RNA datasets, covering protocols like Slide- 
DNA-Seq [ 9 ], 10x Visium [ 56 ], 10x Xenium [ 57 ], Slide-RNA- 
Seq v2 [ 58 ], etc. 

CNAScope holds CNA profiles generated by 32 computa- 
tional workflows (e.g. ascatNgs [ 4 ], inferCNV [ 8 ], Ginkgo [ 6 ],
etc.). These profiles span three valuation scales—ACN,
ACN estimate, and log 2 ratio—and three locus resolutions: 
segment-level BED files, bin-level matrices, and gene-level 
matrices. Detailed definitions and operations are provided 

in Methods. All CNA profiles are available as download- 
able files ( ∗seg.txt , n = 265 and ∗cna.csv , n = 1140).
CNAScope provides curated metadata ( https://cna.fengslab. 
com/database ), including cancer subtypes, patient character- 
istics (ethnicity, race, gender, age), sample-specific features 
(disease type, primary site, tumor stage, tumor grade), and 

survival endpoints (overall survival and progression-free sur- 
vival). For single cells and spatial cells/spots, additional meta- 
data such as cell type, CNA confidence, donor identity, and 

malignancy status are also curated. 
CNAScope performs comprehensive annotation for these 

CNA profiles, structured into two main perspectives: obser- 
vational and functional. 

From the observational perspective, CNAScope offers an- 
notations that capture the underlying data structure and rela- 
tionships. This includes phylogenetic inference via hierarchi- 
cal clustering to reveal sample or cell homogeneity and hetero- 
geneity. Approaches for data dimension reduction, including 
PC A, IC A, NMF , UMAP , t-SNE, and PHATE, are employed to 

facilitate data visualization and interpretation. Downloadable 
files for these annotations include ∗meta_scsvas.csv , n = 

1140 and ∗.nwk , n = 1140. 
From the functional perspective, CNAScope provides 

biologically meaningful annotations. Gene-level CNA anno- 
tation is performed with BEDTools, while pathway term-level 
annotation leverages six MSigDB collections, including 
cancer hallmarks, KEGG, GOBP, etc. The resulting files 
( ∗gene_cna.csv.gz , n = 1140; ∗term_cna.csv.gz ,
n = 1140) are available for users. Next, for each dataset,
we annotated the top 1000 most variable bins, genes,
and terms based on CN values. When spatial coordi- 
nates were available, we additionally identified and an- 
notated spatially variable CN bins, genes, and terms.
Downloadable files include: ∗top_CN_variance.csv ,
n = 1137; ∗top_CN_spatial_variance.csv , n = 

82. For bulk DNA sample-level analyses, CNAScope 
conducts focal CNA, gene, and term annotations us- 
ing GISTIC2 and ORA enrichment. The downloadable 
results include ∗amp_genes.conf_95.txt , n = 119 ; 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://cna.fengslab.com/database
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Figure 1. Content and annotation in CNAScope. CNAScope holds 3 954 361 CNA profiles from eight major databases, delivering in-depth annotation for 
each profile. 
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del_genes.conf_95.txt , n = 119 ; ∗scores.gistic ,
 = 119 ; and ∗focal_term.csv n = 119. For bulk
NA datasets with at least two CNA profiles from dif-

erent sequencing protocols or computational workflows,
NAScope also reports consensus CNAs, genes, and terms.
hese can be downloaded as: ∗consensus_cna.csv ,
 = 34; ∗consensus_gene.csv , n = 34; and
consensus_term.csv , n = 34. 

nline annotation workflows in CNA S cope 

NAScope enables researchers to annotate newly generated
NA profiles from both observational and functional per-

pectives (Fig. 2 ). The platform offers two annotation work-
ows, designed to accommodate a single CNA profile or cross-
rofile agreement. 
The first workflow, Basic CNA Annotation, allows users to

pload a single CNA profile, with the option to include meta-
ata and custom gene sets. Users specify the observation type
“sample, ” “cell, ” or “spot”), reference genome (“hg19” or
hg38”), and the desired number of clusters ( k ). CNAScope
hen automatically performs a comprehensive suite of basic
nnotations. Observational modules include phylogenetic in-
erence (hierarchical clustering), observation clustering (hi-
rarchical clustering), and dimension reduction (PC A, IC A,
MF , UMAP , t-SNE, PHATE). Functional modules provide

ene-level and term-level CNA annotation, with highly vari-
ble and spatially variable bins, genes, and terms identified.
hen the observation unit is a sample, focal CNA, gene,

nd term analyses are performed using GISTIC2 built-in six
SigDB pathway collections (including cancer hallmarks,

EGG, GOBP, etc.). Additionally, users can annotate CNA
ith their own uploaded target gene set terms. 
The second workflow, Consensus CNA Annotation, identi-

es shared CNAs, genes, and terms from multiple CNA pro-
files generated across different sequencing protocols or com-
putational workflows within a single bulk DNA dataset. Users
must upload at least two CNA profiles derived from the same
bulk DNA dataset, and specify the locus type (segment or bin)
and reference genome (hg19 or hg38), with optional gene sets.
This workflow runs the focal CNA, gene, and term annotation
modules separately for each profile, then derives consensus
CNA, gene, and term annotations across profiles. This yields
a unified call set that provides more confident biological in-
sights by reducing noise introduced by differing sequencing
protocols and computational workflows. 

The entire annotation process is streamlined for intuitive,
point-and-click operation, supporting both single- and cross-
profile analyses tailored to diverse research needs. Upon com-
pletion, CNAScope provides downloadable output files (e.g.
∗cna.csv , ∗meta_scsvas.csv , ∗gene_cna.csv.gz ,
∗term_cna.csv.gz , ∗top_CN_variance.csv ,
∗top_CN_spatial_variance.csv , 
∗amp_genes.conf_95.txt , ∗del_genes.conf_95.txt
∗scores.gistic , ∗focal_term.csv ,
∗consensus_cna.csv , ∗consensus_gene.csv , and
∗consensus_term.csv ) via the user workspace. 

To enhance user accessibility, CNAScope provides five de-
mos: Workflow 1 includes TCGA-ACC (bulk DNA), WCDT-
MCRPC (bulk DNA), and BRCA-T10 (scDNA); Workflow 2
features TCGA-BRCA (segment) and TCGA-BRCA (bin). These
demonstration cases offer users step-by-step examples and
guidance throughout the annotation process. 

Interactive visualizations in CNA S cope 

CNAScope features user-friendly web interfaces with main
navigation tabs for Home, Database, Workflow, Workspace,
Tutorial, and Contact. The Home page summarizes the plat-
form’s features and dataset statistics, with graphical overviews
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Figure 2. Ov ervie w of online annotation w orkflo ws in CNA Scope. CNA Scope pro vides standardiz ed and interactiv e online w orkflo ws (B asic CNA 

Annotation and Consensus CNA Annotation) for annotating CNA profiles. 
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(see Figs 1 and 2 ). The Database page allows users to filter
and browse datasets by source, cancer type, modality, and
other parameters, with each dataset page offering detailed and
downloadable metadata, annotations, and interactive visual-
izations. The Workflow page provides access to basic and con-
sensus CNA annotation online tools, allowing users to option-
ally provide an email address during submission for notifica-
tion upon task completion. The Workspace allows users to
track the status of submitted analyses and download results.
Tutorial and Contact pages offer step-by-step user guides and
ways for additional assistance. 

On both the dataset and workflow result pages, CNAScope
provides interactive visualization panels to comprehen-
sively illustrate CNA annotation results [Figs 1 and 2 and
( Supplementary Figs S4 –S12 )]. These include CNA heatmaps
at bin, gene, and term levels; phylogenetic trees; embedding
maps; spatial distribution plots; CN stairstep plots; CN dis-
tribution charts; focal CNA and gene views; consensus genes
vein plots; and focal and consensus term bar plots. These
visualizations are highly interactive and customizable, fea-
turing informative tooltips, adjustable plot sizes, and zoom-
ing. Importantly, every visualization is downloadable in high-
resolution, publication-ready formats. 

Case study: focal and consensus annotations 

across sequencing protocols and computational 
workflows in GDC bulk DNA datasets 

In CNAScope, the collected 56 GDC [ 18 ] bulk DNA
datasets include multiple segment-level BED CNA profiles
derived from different sequencing protocols—allele-specific
(AS), copy-number segment (CNS), and masked copy-number
segment (MCNS)—and computational workflows: ascat2,
ascat3, ascatNGS, DNAcopy, and GATK4_CNV. For each
dataset, focal CNAs are small amplifications or deletions re- 
currently observed across multiple samples, annotated with 

GISTIC2 for each individual CNA profile. Genes that fall 
within these regions—termed focal—are candidates for bi- 
ological significance and potential cancer drivers, as their 
aberrations are recurrent events within the same dataset. Six 

MSigDB pathway collections—including Hallmark, KEGG,
and GO Biological Process—were enriched for focal genes to 

provide pathway-level focal terms for biological interpreta- 
tions (see the “Materials and methods” section). 

Across 56 GDC datasets, we asked whether CNAScope’s fo- 
cal calls are stable when the segment-level protocol and anal- 
ysis workflow vary within the same dataset. We compared 

all protocol–workflow pairs using Jaccard similarity of focal 
sets and tallied the number of shared focals ( Supplementary 
Fig. S2 ). Within-protocol comparisons (for example, CNS ver- 
sus CNS across different workflows) show higher similarity 
than cross-protocol comparisons (AS versus CNS or AS ver- 
sus MCNS), indicating that the segment-generation protocol 
is a major source of variability. Focal genes are more concor- 
dant than focal terms, consistent with additional variability 
introduced by term-level aggregation. Despite these trends, ab- 
solute concordance across different protocol–workflow pairs 
within the same dataset is often low, demonstrating that focal 
annotations are sensitive not only to bin size ( Supplementary 
Fig. S1 A) but also to upstream protocol and workflow 

choices. 
Importantly, overlap counts reveal that many biologically 

plausible events recur across pairs even when Jaccard similar- 
ity is low. For example, in CNS-versus-CNS comparisons the 
median number of shared focal genes per dataset is substan- 
tial (dozens to hundreds), and even cross-protocol compar- 
isons retain a nontrivial shared core; focal terms also exhibit 
measurable overlap ( Supplementary Fig. S2 B). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
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These findings motivate CNAScope’s consensus definition:
onsensus genes are the intersection of focal genes across all
vailable protocol–workflow profiles within a dataset, and
onsensus terms are pathways enriched by these consensus
enes (see the “Materials and methods” section). This de-
ign prioritizes robustness—retaining only those focal events
hat replicate across heterogeneous inputs—thereby mitigat-
ng protocol/workflow sensitivity while preserving biologi-
ally meaningful signals. 

Next, we analyzed CNAScope-annotated consensus events
cross 56 bulk DNA GDC datasets. In total, 34 datasets con-
ain amplified or deleted consensus genes agreed upon by two
o six protocol–workflow combinations (Fig. 3 A). 

The number of deleted consensus genes (hundreds to thou-
ands) exceeds the number of amplified consensus genes (tens
o hundreds) (Fig. 3 B). This is plausible because deletions
re often more widespread and recurrent—capturing large
egions enriched for tumor suppressors and common fragile
ites—whereas amplifications typically occur in fewer, more
ocal hotspots around oncogenes. 

Among the 34 datasets, 30 showed significant enrich-
ent (FDR P -values < .01) of amplified or deleted con-

ensus terms across MSigDB collections (Hallmark, C2-
EGG, C4-Computational, C5-GO BP, C6-Oncogenic, C7-

mmunologic). For clarity, we focused on the top five KEGG
erms for amplification and deletion separately. In Fig. 3 C, am-
lification enrichments cluster in growth and signaling pro-
rams (PI3K, EGFR, RAS) along with transcriptional con-
rol and cell-cycle checkpoints. This aligns with oncogene-
riven amplicons that promote proliferation [ 59 , 60 ]. Several
atasets exhibit moderate-to-high GeneRatios with strong sig-
ificance. For deletions, enrichments trend toward immune-
elated pathways (e.g. antigen processing and presentation)
nd apoptosis/cell-death signaling, consistent with loss of
umor-suppressive and immune-modulatory genes [ 61 ]. Al-
hough fewer KEGG terms are highlighted per dataset than for
mplifications, some deletion signals show high significance
nd sizable GeneRatios. 

Moreover, we externally validated CNAScope’s focal and
onsensus annotations using two orthogonal resources—
BioPortal [ 15 ] (gene-level CNA frequencies) and Pro-
enetix [ 19 ] (segment-level CNA frequencies). We analyzed 33
DC-sourced TCGA datasets shared across CNAScope, Pro-

enetix, and cBioPortal (see Supplementary Results 2.2 and
upplementary Fig. S3 ). Together, these analyses show strong
xternal concordance—especially for amplifications—while
lso highlighting CNAScope-unique, literature-supported fo-
al and consensus events, particularly deletions that may be
nderrepresented in gene-level frequency resources. 

iscussion 

n this study, we present CNAScope, an online database for
omprehensive annotation and visualization of cancer CNAs.
ompared with existing CNA databases—such as cBioPor-

al [ 15 ], COSMIC [ 16 ], DGV [ 17 ], GDC [ 18 ], HSCGD [ 21 ],
rogenetix [ 19 ], and scTML [ 22 ]—CNAScope offers several
nique advantages (Table 1 ): 

(i) Extensive cancer CNA collection. CNAScope offers a
truly comprehensive, cancer-centric, and multi-modal
resource with largest cancer data size. It holds CNA
data from five data modalities: bulk DNA, single-
cell DNA, spatial DNA, single-cell RNA, and spatial
DNA. In total, the resource spans 810 datasets, 174
464 samples, 3 018 672 single cells, 764 232 spatial
cells/spots, and 3 946 319 associated metadata. The
breadth of data modalities and the overall data volume
compare favorably with existing databases (Table 1 )—
which may focus on common and non-pathological
variation (DGV [ 17 ]), only bulk DNA focus (cBioPor-
tal [ 15 ], COSMIC [ 16 ], GDC [ 18 ], Progenetix [ 19 ]),
only single-cell focus (HSCGD [ 21 ]), transcriptome-
derived CNAs (scTML [ 22 ]), or only gene-level CNA
calls (COSMIC [ 16 ], scTML [ 22 ]). 

(ii) Systematic observational and functional annotation.
CNAScope uniquely combines observational and func-
tional annotation. CNAScope applies phylogenetic
inference, observation clustering, and dimension re-
duction to reveal tumor subtypes, clonal structure,
and intra-/inter-tumor heterogeneity at both bulk and
single-cell levels, whereas existing databases provide
no or partial support for these observational annota-
tions (Table 1 ). Critically, CNAScope supports func-
tional annotation that identifies focal CNAs/genes
within individual profiles and consensus CNAs/genes
across profiles within the same dataset to mitigate
biases from heterogeneous data sources. In addition,
CNAScope systematically maps these genes to path-
way terms using up-to-date reference databases such
as Ensembl [ 41 ], MSigDB [ 43 ], KEGG [ 44 ], and GO
[ 45 ]. In contrast, other CNA platforms (Table 1 ) rarely
support focal or consensus calling. cBioPortal and Pro-
genetix offer only limited functionality, primarily re-
porting CNA frequencies (see Supplementary Figure 1.
2 for details). 

(iii) Code-free online annotation CNAScope uniquely sup-
ports on-the-fly annotation directly into its web inter-
face, allowing users to upload single or multiple CNA
data and perform basic and consensus CNA annota-
tion discovery without leaving the platform—a feature
rarely offered by existing databases (Table 1 ). 

(iv) Comprehensive interactive visualization. In
CNAScope, visualization panels are highly inter-
active, offering informative tooltips, adjustable plot
sizing, zooming, highlighting, and export options,
and they are configurable via a comprehensive editor
for customized annotation choices. However, existing
cancer-focused platforms provide only a partial subset
of these functionalities (Table 1). 

Next, we outline the concerns we encountered in collect-
ing, curating, and annotating CNA data, describe our planned
solutions, and call for the community to address these issues
together. 

We acknowledge the data heterogeneity, systematic biases,
and batch effects inherent to CNA calling across datasets.
In CNAScope, we use per-dataset CNA profiles from online
sources that have already applied widely adopted callers with
best practices [ 4 , 6 , 40 , 62–64 ] (see https://cna.fengslab.com/
database ), or we derive CNAs from single-cell and spatial
transcriptomic data using inferCNVpy [ 8 ] (see Supplementary
Methods 1.1 ). These standardized pipelines incorporate nor-
malization and statistical procedures designed to address
batch effects and platform-specific biases when converting
raw read counts into A CN, A CN estimate, or log 2 -ratio

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://cna.fengslab.com/database
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
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Figure 3. Analysis of consensus CNAs annotated by CNAScope across GDC bulk DNA sequencing protocols and computational workflows. ( A ) Dot plot 
of consensus a v ailability: each filled point indicates that focal amplification and deletion results exist for a given protocol–workflow within each dataset. 
( B ) Bar plot of consensus burden: counts of amplified and deleted consensus genes per dataset. ( C ) KEGG consensus terms: for each dataset, the top 
five KEGG terms for amplifications and deletions. Point size = GeneRatio (fraction of consensus genes in that term). Color = –log 10 (FDR), with higher 
v alues (y ello w/green) indicating stronger significance and lo w er v alues (purple/blue) indicating w eak er significance. Av ailable protocols: allele-specific 
(AS), cop y -number segment (CNS), and mask ed cop y -number segment (MCNS). Av ailable w orkflo ws: ascat2, ascat3, ascatNGS, DNA cop y, and 
GATK4_CNV. AMP: amplification. DEL: deletion. FDR: false discovery rate. 
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Table 1. Comparison of CNAScope with existing CNA databases 

Feature CNAScope cBioPortal COSMIC DGV GDC HSGCD Progenetix scTML 

(2025) (2025) (2024) (2020) (2021) (2025) (2021) (2024) 

Cancer Focus � � � - � � � � 

Cancer Data Size 
# of datasets 810 303 54 75 51 45 – 77 
# of samples 174 464 195 825 13 753 54 980 130 031 200 240 600 320 
# of cells 3 018 672 – – – – 9788 – 240 1261 
# of spots 764 232 – – – – – – 118 600 

Data Modality 
bulkDNA � � � � � – � –
scDNA � – – – – � – –
spaDNA � – – – – – – –
scRNA � – – – – – – � 

spaRNA � – – – – – – � 

CN Valuation Scale 
Absolute copy number 

(ACN) 
� – � � � � – –

ACN Estimate � – � – � – � –
Log2 Ratio � � – – � – � � 

CN Locus Resolution 
Segment-Level BED � � – � � – � –
Bin-Level Matrices � – – – – � � –
Gene-Level Matrices � � � – � – � � 

Metadata Annotation � � � � � L � � 

Search Panel � � � � � � � –
Observational Annotation 

Phylogeny Inference � – – – – � � –
Observation Clustering � – – – – – – � 

Dimension Reduction � – – – – – – � 

Functional Annotation 
Gene-Level CNA � � � � � – � � 

Term-Level CNA � – – – – – – –
High Variable 

Bin/Gene/Term 

� – – – – – – –

Spatial Variable 
Bin/Gene/Term 

� – – – – – – –

Focal CNA � L – – – – L –
Focal Gene � – – – – – – –
Focal Term � – – – – – – –
Consensus CNA � – – – – – – –
Consensus Gene � – – – – – – –
Consensus Term � – – – – – – –

Online Workflow � – – – – � – –
Interactive Visualization 

Customized Panel � � – � � – � � 

Informative Tooltips � � � � � L – –
Adjustable Plot Size � – – � – L – –
Zoomable � � – � � L – –
Downloadable Figure � � – � � � � � 

Downloadable Data � � � � � � � � 

� : Feature supported, -: Not applicable, L: Limited functionality. Detailed explanation is provided in Supplementary Methods 1.2 . 
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rofiles. Interpretation of A CN, A CN estimate, and log 2 ra-
io follows established community conventions: amplification
ACN [estimate] > 2; log 2 ratio > 0), neutrality (ACN [esti-
ate] = 2; log 2 ratio = 0), and deletion (ACN [estimate] < 2;

og 2 ratio < 0). Accordingly, switching between these scales
oes not change the underlying biological interpretation. To-
ether, these practices help ensure that most systematic biases
nd batch effects are mitigated prior to CNAScope’s observa-
ional and functional annotations so that the remaining vari-
bility in raw CNA profiles reflects underlying intra- and inter-
umor heterogeneity. 

In the CNAScope annotation step, we preserve the original
alue scale unless a downstream analysis explicitly requires
 different one. Because raw CNA profiles in CNAScope
ary in locus resolution (segment-level BED, bin-level, or
gene-level matrices) and focal annotations are highly sensi-
tive to resolution, CNAScope retains the native resolution
whenever performing focal annotation to avoid information
loss. Observation-level annotations, however, require a ma-
trix format. When source CNA data are not provided as ma-
trices (e.g. bulk DNA GDC data), CNAScope curates and
converts them into matrices with three available bin sizes
(200 kb, 500 kb, and 5 Mb). Benchmark performance for
these options is provided in Supplementary Results 2.1 and
Supplementary Fig. S2 , enabling users to choose their pre-
ferred granularity. 

GISTIC2 is designed for bulk, segment-level datasets
with independent samples. Our benchmarking shows that
its focal calls are sensitive to bin size and to biases aris-
ing from sequencing protocols and computational work-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1242#supplementary-data
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flows ( Supplementary Results 2.1 , Results-Case Study, and
Supplementary Figs S1 and S2 ). Thus, for bulk DNA datasets
that provide only raw gene-level or bin-level CNA data, and
for single-cell or spatial datasets—where observations are cells
or spots from a single patient—the rationale for dataset-level
GISTIC2 focal discovery is weak. To our knowledge, no ded-
icated tools currently support multi-sample focal event detec-
tion in single-cell or spatial settings or gene-level focal calling.
Accordingly, CNAScope does not report focal and consensus
annotations for gene-level, single-cell, or spatial data. We call
for methods tailored to focal CNA detection in these data for-
mats, which would enable CNAScope to incorporate such an-
notations in future releases. Moreover, CNAScope provides
consensus calling to identify focal CNAs/genes/terms across
multiple profiles within a dataset, mitigating biases from het-
erogeneous data sources. 

For ST data, CNAScope presently uses the single–cell tool
inferCNVpy [ 8 ] to derive spot–level CNA profiles because
spatially aware CNA inference for ST is still immature. Spa-
tialInferCNV [ 10 ] relies on the inferCNV core algorithm
and primarily projects inferred CNAs onto tissue coordi-
nates without integrating spatial information during infer-
ence. ST AR CH [ 65 ] incorporates spatial context but outputs
only categorical copy-number states (e.g. amplification, dele-
tion), not full CN profiles. CalicoST [ 66 ] infers allele-specific
CNAs with spatial context but requires BAM files and can-
not operate directly on expression data. We acknowledge
this limitation and strongly encourage the development of
methods that infer CNAs directly from ST expression, which
would enable truly spatially resolved CNA analyses in future
CNAScope updates. 

CNAScope collects data from five modalities—bulk DNA,
scDNA, spatial DNA, scRNA, and spatial RNA—but sample-
or cell-level overlap across modalities is limited. We plan to
recruit cross-modality CNA profiles derived from the same
samples or cells to further enhance CNAScope’s richness and
comparability in further releases. 
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