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Abstract 

Microorganisms, including bacteria, archaea, fungi, and viruses, are the most tax onomically div erse and ecologically dominant life forms on 
Earth, playing critical roles in ecosystems, human health, and industrial applications. While existing microbial databases such as B V -BRC and 
IMG archive both monoisolate and metagenome-assembled genomes (MAGs) across domains, challenges remain in standardiz ed, multi-le v el 
annotations and interactive tools for all microbial groups. Here, we present MicrobialScope ( https:// microbial.deepomics.org/ ), a comprehensive 
microbial genomic platform that integrates large-scale genome collections, multilevel annotations, and interactive visualizations. MicrobialScope 
harbors 2 411 503 bacterial, 24 472 archaeal, 20 203 fungal, and 188 267 viral genomes derived from both monoisolate assemblies and MAGs. 
Integrating 15 state-of-the-art bioinformatics tools and 10 specializ ed databases, MicrobialScope pro vides e xtensiv e annotations encompassing 
basic genomic features, genomic element prediction (e.g., genes, tRNA s, tmRNA s, CRISPR–Cas and anti-CRISPR elements, secondary metabo- 
lite biosynthetic clusters, signal peptides, and transmembrane proteins), and functional and str uct ural annotations. This includes 1 072 114 935 
proteins with diverse annotations, 24 640 186 tRNAs and tmRNAs, 140 888 CRISPR–Cas systems, 173 256 anti-CRISPR elements, 105 121 
secondary metabolite biosynthetic clusters, 13 235 096 signal peptides, and 50 811 729 transmembrane proteins. In addition, MicrobialScope 
offers unrestricted access to all data resources, interactive visualization tools, and built-in online analytical modules f or intuitiv e e xploration and 
comparativ e analy sis. With its e xtensiv e genome collection, comprehensiv e annotations, and user-friendly interf ace, MicrobialScope serv es as 
a scalable platform to advance genome research across diverse microbial domains. 
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Introduction 

Microorganisms, including bacteria, archaea, fungi, and
viruses, constitute the most taxonomically diverse and ecolog-
ically dominant group of organisms on Earth [ 1–3 ]. Micro-
bial communities exhibit extraordinary biodiversity and are
established across nearly all ecological niches [ 4–6 ]. In addi-
tion to their immense biodiversity, microorganisms harbor a
vast repertoire of functional genetic elements [ 7 ], such as viru-
lence factors [ 8 ], antibiotic resistance genes [ 9 ], and secondary
metabolite biosynthetic clusters [ 10 ]. These genetic elements
not only support microbial adaptation to extreme and com-
petitive environments [ 6 ] but also play critical roles in host
physiology as well as human health and disease [ 11 ]. 

Microbial genomes harbor rich functional elements, which
facilitates investigation into their ecological adaptability, evo-
lutionary trajectories, and impacts on host health [ 6 , 11–
13 ]. Although the distribution of genetic components varies
across bacteria, archaea, fungi, and viruses, several classes
of functional elements are of particular importance. Protein-
coding genes and transfer RNAs (tRNAs) are fundamental
for maintaining essential cellular processes and supporting
protein translation across all microbial taxa, while transfer-
messenger RNAs (tmRNAs) perform similar roles primarily in
prokaryotes [ 14 ]. CRISPR–Cas systems and anti-CRISPR el-
ements contribute to microbial immune defense and counter-
defense mechanisms [ 15 ], shaping host–virus dynamics and
promoting microbial evolution. Signal peptides and trans-
membrane proteins facilitate protein secretion, membrane
transport, and environmental sensing [ 16 ], which are criti-
cal for microbial survival in diverse complex niches. Virulence
factors mediate host colonization and pathogenesis [ 8 ], while
antibiotic resistance genes are widely distributed among bac-
teria and some fungi [ 9 ], contributing to microbial pathogen-
esis and clinical challenges. In addition, secondary metabo-
lite biosynthetic clusters produce bioactive compounds [ 10 ],
which promote interspecies interactions and chemical com-
munication. The application of large-scale language mod-
els [ 17 ] has significantly improved protein structure predic-
tion, thereby enhancing the analysis of microbial functional-
ity at the molecular level. These functional elements collec-
tively represent a rich genetic resource crucial for elucidating
microbial evolution and leveraging their roles in host health
[ 7 , 11 , 18 ]. 

Several microbial genome repositories have advanced mi-
crobial research, yet gaps remain in achieving compre-
hensive, standardized, and interactive resources. Notable
databases, such as NCBI RefSeq [ 19 ], EBI MGnify [ 20 ], BV-
BRC [ 21 ], and IMG [ 22 ], curate large-scale genomic data,
including monoisolate genomes and metagenome-assembled
genomes (MAGs), with standardized annotations and tax-
onomic frameworks. For example, IMG integrates bacte-
ria, archaea, fungi, and viruses with extensive MAGs, of-
fering unified annotation pipelines and interactive visual-
izations, while BV-BRC provides standardized annotations
and tools for bacteria and viruses. However, these resources
vary in their coverage of all microbial domains, depth of
functional annotations, and interactivity for comparative
genomics. 

To overcome these limitations, we developed Micro-
bialScope ( https:// microbial.deepomics.org/ ): an integrated
genomic resource that offers extensive genome coverage, stan-
dardized genome annotation, and interactive data visualiza-
tion. MicrobialScope incorporates high-quality genomes from 

NCBI RefSeq and GenBank as well as MAGs derived from 

diverse environments, such as the human gut, oral cavity, res- 
piratory tract, skin, reproductive system, and other ecologi- 
cal niches. Each microbial genome in MicrobialScope contains 
comprehensive and standardized annotations that encompass 
basic features (e.g., genome length, assembly level, and tax- 
onomic classification), genomic elements (e.g., genes, tRNAs,
tmRNAs, CRISPR–Cas systems, and anti-CRISPR elements),
functional annotations (e.g., virulence factors, antibiotic resis- 
tance genes, and secondary metabolite biosynthetic clusters),
and protein structures predicted by a large protein language 
model. To facilitate data exploration, MicrobialScope also 

provides web-based tools for customizable querying, interac- 
tive genome browsing, and full data downloads. By integrat- 
ing rich annotations with interactive access, MicrobialScope is 
a comprehensive and user-friendly platform for investigating 
microbial diversity, evolutionary biology, and host-associated 

functionality. 

Materials and methods 

Microbial collection and integration 

To compile a comprehensive collection of microbial se- 
quences, we gathered a wide array of single genomes and 

MAGs, integrating microbial genomes from four major do- 
mains: bacteria, archaea, fungi, and viruses. We collected sin- 
gle genomes from the NCBI RefSeq and GenBank databases 
(till 12 December 2024) [ 19 , 23 ], along with MAGs deposited 

in these repositories from diverse environments, as well as 
MAGs reconstructed in our laboratory (e.g. RMGC). For the 
collected microbial genomes, assemblies underwent quality 
control based on genome size and GC content. Specifically,
bacterial and archaeal genomes < 0.1 Mb or > 20 Mb, or with 

GC contents outside the 25%–75% range, were excluded.
Fungal genomes < 1 Mb or with GC contents < 25% or 
> 75% were removed. Viral genomes with sizes < 1 kb or 
> 2 Mb, or with GC contents outside 25%–75%, were fil- 
tered out. In addition, bacterial and archaeal genomes were 
further assessed using CheckM (v1.2.3) [ 24 ], and those with 

estimated completeness below 50% or contamination above 
10% were excluded. After filtering, only high-quality single 
genomes and MAGs were retained, ensuring a consistent and 

reliable dataset for downstream analyses. We also identified 

duplicate sequences present across the four domains using 
MMseqs2 (v15.6f452) with the following clustering parame- 
ters to detect microbes with identical sequences: “–cov-mode 
0 -c 1.0 -min-seq-id 1.0” [ 25 ]. The microbial IDs correspond- 
ing to these duplicate sequences were retained and are dis- 
played adjacent to the “Genome List” page of the Micro- 
bialScope website. Within these datasets, our collection covers 
not only genome sequences and their basic information (e.g.,
length, N50, assembly level (refers to the genome complete- 
ness as defined by NCBI, such as complete genome, chromo- 
some, scaffold, or contig), etc.), but also their taxonomic in- 
formation. 

Annotation of microbial genes and genomic 

elements 

For microorganisms without pre-existing genomic annota- 
tions in their source databases, we performed gene and ge- 
nomic element annotations. Gene annotation differs substan- 

https://microbial.deepomics.org/
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ially between eukaryotes and prokaryotes because of their
istinct gene structures. For bacterial, archaeal, and viral
enomes, we used Prokka (v1.11) [ 26 ] for annotation, which
ntegrates Prodigal (v1.6.3) [ 27 ] for identifying open reading
rames and ARAGORN (v1.2.41) [ 28 ] for detecting tRNA
nd tmRNA genes. We annotated fungal genomes using the
ungus-specific pipeline, Funannotate (v1.8.17) [ 29 ]. Funan-
otate is based on Evidence Modeler, which integrates mul-
iple gene prediction inputs to produce consensus gene mod-
ls. The supported ab initio gene predictors include Augus-
us (v3.5.0) [ 30 ], SNAP (2006-07-28) [ 31 ], GlimmerHMM
v3.0.4) [ 32 ], CodingQuarry (v2.0) [ 33 ], and GeneMark-
S/ET (v4.71_lic) [ 34–36 ]. Finally, we predicted tRNA genes
sing tRNAscan-SE (v2.0.12) [ 37 ]. 
We subsequently analyzed the CRISPR–Cas systems in

rokaryotic genomes. We identified CRISPR arrays and
heir associated Cas genes in each plasmid genome using
RISPRCasTyper (v1.8.0) [ 38 ] and classified system subtypes
ased on a comprehensive analysis of Cas genes and CRISPR
epeat sequences. We predicted anti-CRISPR proteins (Acrs)
sing AcrFinder (v2.0) [ 39 ], which combines sequence ho-
ology and guilt-by-association approaches for detection. We
redicted signal peptides and their cleavage sites in bacterial,
ungal, and archaeal proteins using SignalP 6.0 [ 40 ]. To iden-
ify transmembrane domains in membrane proteins across the
our domains, we used TMHMM 2.0 [ 41 ], which applies Hid-
en Markov Models to capture structural complexity. We ex-
cuted all tools with domain-specific parameter adjustments
 Supplementary Table S1 ). 

unctional annotation 

or functional annotation of coding sequences, we used
ggNOG-mapper (v2.1.12) [ 42 ] with the default parameters
o perform rapid orthology assignments based on precom-
uted eggNOG (v5.0.2) clusters and phylogenies [ 43 ]. The
esulting annotations included comprehensive matching and
coring information along with functional insights from mul-
iple databases, such as Gene Ontology (GO) [ 44 ], the Kyoto
ncyclopedia of Genes and Genomes (KEGG) [ 45 ], the BiGG
atabase [ 46 ], Clusters of Orthologous Groups (COG) [ 47 ],

nd the Carbohydrate-Active EnZymes database (CAZy) [ 48 ]
 Supplementary Table S2 ). 

In addition, we conducted homology-based searches for
icrobial proteins using Diamond (v2.1.8.162) [ 49 ], refer-

ncing the Virulence Factor Database (VFDB) [ 50 ] for bac-
eria, archaea, and viruses, and the Database of Fungal Vir-
lence Factors in Fungal Pathogens (DFVF) [ 51 ] for fungi.
e identified virulence factors as matches exceeding 60% se-

uence identity and a 80% coverage threshold. We performed
ntibiotic resistance gene annotation for bacterial, archaeal,
nd fungal genomes using homology and single-nucleotide
olymorphism modeling, referencing the Comprehensive An-
ibiotic Resistance Database (CARD) [ 52 ] with the parame-
ers, “–include_loose” and “–include_nudge.” For viruses, we
dentified their antibiotic resistance genes using AMRFinder-
lus (v4.0.23) [ 53 ] with the parameters, “–plus.” Finally, we

dentified and annotated secondary metabolite biosynthetic
ene clusters in bacterial, archaeal, and fungal genomes us-
ng antiSMASH (v7.1.0) [ 54 ], incorporating both domain-
pecific settings and the following additional parameters: “–
sf –cc-mibig –cb-general –cb-knownclusters –cb-subclusters
pfam2go.”
Protein structure prediction 

We employed artificial intelligence-driven modeling ap-
proaches to predict protein structures and generate high-
resolution 3D models. Specifically, we integrated ESM-
Fold [ 17 ] into the web-based framework of MicrobialScope.
To assess the confidence of the predicted structures, we utilized
the predicted Local Distance Difference Test (pLDDT), which
provides residue-level confidence scores. On each “Protein De-
tail” page, users can interactively visualize the 3D model, ex-
amine residue-specific pLDDT scores by hovering over indi-
vidual residues, and download the corresponding CIF file con-
taining structural coordinates and confidence metrics for fur-
ther analysis. 

Sequence alignment 

To enable comparative analysis of protein coding sequences
between user-submitted microbial genomes and those avail-
able in MicrobialScope, we employed BLASTP [ 55 ] to per-
form pairwise alignments of predicted proteins. The “Align-
ment Results” page provides an integrated view of each
genome’s gene predictions, associated functional annotations,
and pairwise protein-level similarities, offering insights into
their genetic relatedness. Moreover, all BLAST and alignment
outputs are available for download, enabling users to perform
downstream analysis. 

Comparative analysis 

To infer genetic relationships among microbial genomes,
we implemented a two-stage comparative analysis pipeline.
First, we calculated pairwise genome distances based on an
alignment-free comparison that quantifies dissimilarity via
Euclidean distance calculated from 6-mer frequency profiles
using Alfpy [ 56 ]. Second, we applied the neighbor-joining al-
gorithm to these distance matrices to construct a dendrogram
representing genome-level similarity in a phylogeny-like struc-
ture. The resulting page provides a comparative tree available
for download in PHY format. 

Statistical analysis 

To demonstrate the use of MicrobialScope, we retrieved coro-
navirus genomes for the case study, utilizing the filtering inter-
face in the “Genome” section under the “Database” menu of
MicrobialScope. We used the following settings: “Viruses”un-
der “Microbe,” “Monoisolate” under “Assembly Type,” and
“Complete Genome”under “Assembly Level.”By entering the
keyword “coronavirus” into the top-right search box using
“Species” next to the search bar, we obtained 103 complete
coronavirus genomes. To explore the phylogenetic relation-
ships of these coronaviruses, we downloaded the correspond-
ing metadata, genome sequences, and annotation files by click-
ing the “Download”button and constructed a whole-genome-
based phylogenetic tree using the “Comparative Analysis”
module under the “Analysis” menu. W e subsequently em-
ployed iTOL (v7.2.1) to visualize key attributes of these coro-
naviruses [ 57 ], including taxonomic classification, host origin,
gene counts, and the number of annotated antibiotic resistance
genes. To demonstrate functional genome exploration, we fur-
ther examined the genome annotation of a human-derived
S AR S-like coronavirus (i.e. GC A_031162155.1) and visual-
ized the predicted 3D structures of its viral proteins by ESM-
Fold embedded in MicrobialScope. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1234#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1234#supplementary-data
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Figure 1. Ov ervie w of the microbial genomic resources in MicrobialScope. MicrobialScope integrates curated microbial genomes from bacteria, archaea, 
fungi, and viruses from public repositories, including both monoisolate genomes and MAGs. The platform offers standardized annotations covering six 
basic genomic features (i.e., genome length, GC content, assembly le v el, chromosome number, contig N50, and scaffold N50) and seven key genetic 
elements (i.e., genes, tRNAs, tmRNAs, CRISPR–Cas systems, anti-CRISPR elements, signal peptides, and transmembrane proteins). In addition, 
MicrobialScope provides diverse functional annotations and 3D protein str uct ures for encoded genes. 
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Platform development 

MicrobialScope is hosted on an Ubuntu 20.04.6 LTS server
equipped with 1 TB memory and 90 TB storage. The plat-
form’s backend functionality is supported by an in-house
framework consisting of Nginx, Django, PostgreSQL, and
React + Next.js [ 58 , 59 ]. We implemented all online data vi-
sualizations using Apache ECharts, D3.js, and Oviz [ 60 ]. We
have also provided detailed tutorials on the platform to facil-
itate user navigation and utilization. 

Results 

Comprehensive and integrated microbial genomic 

resources in MicrobialScope 

MicrobialScope integrates microbial genomes across four ma-
jor domains—bacteria, archaea, fungi, and viruses—including
monoisolate genomes and MAGs (Fig. 1 ). We retrieved
monoisolate genomes from the NCBI RefSeq and GenBank
repositories [ 19 , 23 ], including 1 956 198 bacterial, 2346
archaeal, 19 540 fungal, and 174 956 viral genomes, ac-
counting for 81.42% of the database. MicrobialScope incor-
porates MAGs derived from diverse environments, includ-
ing the human gut [ 61 , 62 ], oral cavity [ 63 , 64 ], respiratory
tract [ 65 ], skin [ 66 ], reproductive system [ 67 ], and other envi-
ronments [ 68–70 ], contributing an additional 455 305 bacte-
rial, 22 126 archaeal, 663 fungal, and 13 311 viral genomes,
accounting for 18.58% of the database. To facilitate the us- 
ability and interoperability of MicrobialScope, we subjected 

all genomes to standardized multilevel annotation, includ- 
ing basic feature extraction, genomic element prediction, and 

functional and structural annotation. 
MicrobialScope extracts six basic genomic features for each 

microbial genome: genome length, GC content, assembly level,
chromosome number, contig N50, and scaffold N50 (Fig. 1 ).
These features vary substantially across microbial domains.
For example, bacterial genomes range from 100 225 to 18 931 

163 bp with GC contents between 25% and 74.99%; archaeal 
genomes exhibit a comparable distribution ( Supplementary 
Table S3 ). Fungal genomes tend to be larger, with lengths from 

1 086 755 to 2 054 317 516 bp and GC contents between 

25.08% and 68.47%. Meanwhile, viral genomes are generally 
smaller, ranging from 1000 to 1 908 524 bp with diverse GC 

contents. Based on assembly completeness, MicrobialScope 
classifies genomes into four tiers: complete genome, chromo- 
some, scaffold, and contig. There are 66 134 bacterial, 759 ar- 
chaeal, 1751 fungal, and 183 291 viral genomes with complete 
or chromosome-level assemblies. Among them, chromosome 
numbers range from 1 to 13 in bacteria, 1 to 9 in archaea, 1 

to 43 in fungi, and 1 to 11 in viruses. As MAGs constitute a 
substantial proportion of MicrobialScope, they mainly remain 

at the scaffold or contig level, including 2 345 369 bacterial,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1234#supplementary-data
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Figure 2. Ov ervie w of the annotation w orkflo w in MicrobialScope. MicrobialScope emplo y s 15 bioinf ormatics tools and 10 functional databases to 
perf orm standardiz ed predictions of genetic elements and functional annotations f or each microbial genome. T he annotations are organiz ed into 10 
specialized datasets: Genome, Protein, tRNA and tmRNA, CRISPR–Cas System, Anti-CRISPR Element, Secondary Metabolite, Signal Peptide, Virulence 
Factor, Antibiotic Resistance Gene, and Transmembrane Protein. 
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3 713 archaeal, 18 452 fungal, and 4976 viral genomic se-
uences. The inclusion of genomic metadata enables users to
ssess genome quality, compare across taxa, and select appro-
riate genomes for downstream analysis. 
MicrobialScope provides systematic annotations of core

enomic elements that are tailored to the biological char-
cteristics of each microbial domain (Fig. 2 ). For bacteria
nd archaea, MicrobialScope provides seven key features:
enes, tRNAs, tmRNAs, CRISPR–Cas systems, anti-CRISPR
lements, signal peptides, and transmembrane proteins. Us-
ng standardized bioinformatics pipelines, we identified 832
02 306 genes, 23 213 807 tRNAs and tmRNAs, 132 788
RISPR systems, 2681 anti-CRISPR elements, 6 988 197

ignal peptides, and 29 686 707 transmembrane proteins
n bacterial genomes along with similar annotations for ar-
haeal genomes ( Supplementary Table S3 ). In fungi, Micro-
ialScope annotates four core features, resulting in the iden-
ification of 193 906 961 genes, 694 231 tRNAs and tmR-
As, 4 481 750 signal peptides, and 11 519 517 transmem-
rane proteins. For viruses, we annotated 6 593 428 genes, 88
568 tRNAs and tmRNAs, 77 CRISPR–Cas systems, 165 420
anti-CRISPR elements, and 987 537 transmembrane proteins
( Supplementary Table S3 ). This extensive catalog of genomic
components supports in-depth investigations of gene structure
and function, facilitating the discovery of elements with poten-
tial clinical or biotechnological applications. 

To enhance functional interpretation, MicrobialScope of-
fers comprehensive functional annotations and protein struc-
ture prediction for each predicted gene (Fig. 2 ). We ap-
plied 10 well-established databases for functional annota-
tions, including GO [ 44 ], KEGG [ 45 ], BiGG [ 46 ], COG [ 47 ],
CAZy [ 48 ], VFDB [ 50 ], DFVF [ 51 ], CARD [ 52 ], Pfam [ 71 ],
and MIBiG [ 72 ], which cover diverse aspects of microbial
metabolism, pathogenicity, enzyme function, resistance mech-
anisms, and secondary metabolite biosynthesis. For each
gene, MicrobialScope provides both database-specific annota-
tions and category-level classifications (e.g. GO terms, COG
functional groups, and KEGG pathways), enabling multidi-
mensional exploration of gene functions. In addition, Mi-
crobialScope employs the ESMFold deep learning frame-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1234#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1234#supplementary-data
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work to predict protein structures at the atomic level [ 17 ].
Users can interactively visualize, manipulate, and down-
load 3D protein models, facilitating structural studies and
functional inference. This combination of functional and
structural prediction offers users a rich resource for study-
ing microbiology from both sequence- and structure-based
perspectives. 

Interactive and informative visualization in 

MicrobialScope 

MicrobialScope features a well-structured, user-friendly web
interface that facilitates querying, visualization, analysis, and
data retrieval. The platform has eight main pages each de-
signed to support navigation and data exploration: “Home,”
“Microorganism, ” “Database, ” “Analysis, ” “Workspace, ”
“Download, ” “Tutorial, ” and “Contact us.”

The “Home” page serves as the integrated entrance, fea-
turing a search box that supports queries by genome ID
or taxonomic name along with a dashboard-style summary
of database contents. It displays the numbers of available
genomes across the four microbial domains, the distribution
of nine annotated features (e.g. genes, tRNAs–tmRNAs, and
CRISPR–Cas systems), and two feature plots that offer quick
insights into the overall annotation landscape. Clicking on
any graph redirects users to the relevant dataset within the
“Database” section. 

The “Microorganism” page presents a comparative
overview of monoisolate and MAG-derived genomes across
the four microbial domains, including detailed counts of
genomes and genetic elements. Users can further explore
genome-level details by clicking the “Explore” button, which
links to the corresponding “Genome” dataset within the
“Database” section. 

The “Database”section is the core of MicrobialScope, com-
prising 10 specialized annotation pages that correspond to dis-
tinct datasets: “Genome, ” “Protein, ” “tRNA and tmRNA, ”
“CRISPR–Cas System, ” “Anti-CRISPR Element, ” “Secondary
Metabolite Biosynthetic Cluster,” “Signal Peptide,” “Viru-
lence Factor,” “Antibiotic Resistance Gene,” and “Transmem-
brane Protein” (Fig. 2 ). Each page includes a filtering panel
on the left for category-based refinement and a search bar
on the top right for targeted queries. All pages also contain
“View Detail” and “Download” options, allowing users to ac-
cess annotation metadata and download nucleotide or amino
acid sequences as needed. Furthermore, a short tutorial pop-
up window is automatically displayed for first-time visitors
when clicking the “View Details”button under the “Genome”
page. 

To support downstream data exploration, the “Analysis”
page provides six integrated online modules: “ORF Prediction
and Protein Classification,” “tRNA and tmRNA Prediction,”
“Virulence Factors and ARG Detection,” “Transmembrane
Protein Annotation,” “Sequence Alignment,” and “Compar-
ative Analysis.” All submitted tasks and results are automat-
ically tracked in the “Workspace” section where users can
monitor task status, access interactive results, and download
outputs via the “View Result” function. 

The “Download” page offers a list of processed datasets
and annotation files. Additionally, the download API at
“Download”page enables users to retrieve customized subsets
of data, including Metadata, FASTA, GenBank, GFF, and An-
notation Data, via flexible filtering options for efficient access 
to large-scale microbial genomic resources. While the “Tuto- 
rial” page provides detailed user guidance and step-by-step in- 
structions to assist in usage. Finally, the “Contact us” page of- 
fers a direct channel for user feedback, facilitating continued 

platform development and community engagement. 

Case study: genomic characterization of 
coronaviruses using MicrobialScope 

To demonstrate the utility of MicrobialScope, we performed 

a case study focusing on the genomic and phylogenetic 
characteristics of coronaviruses using MicrobialScope. Us- 
ing the 103 complete coronavirus genomes filtered from Mi- 
crobialScope, we found that the genome size ranged from 

25 874 to 31 775 bp. These genomes contained 903 pre- 
dicted genes (Fig. 3 A). To explore the phylogenetic relation- 
ships of these coronaviruses, we downloaded the correspond- 
ing metadata, genome sequences, and annotation files from 

MicrobialScope. The results suggest that Alphacoronavirus ,
Betacoronavirus , Gammacoronavirus , and Deltacoronavirus 
form distinct clades, each associated with specific host ranges 
(Fig. 3 A). Notably, both humans and bats primarily host Al- 
phacoronavirus ( n = 8 and 24, respectively) and Betacoron- 
avirus ( n = 2 and 29, respectively), while birds primarily host 
Gammacoronavirus ( n = 2) and Deltacoronavirus ( n = 14). 

To illustrate functional genome exploration, we se- 
lected human-hosted S AR S-like coronavirus WIV16 (i.e.
GCA_031162155.1) for further analysis. The genome en- 
codes 13 genes, including key components associated with 

viral replication and host infection (Fig. 3 B). Using Micro- 
bialScope’s integrated protein structure prediction module, we 
obtained the structures of 6 key viral proteins, including repli- 
case polyprotein 1a, replicase polyprotein 1ab, spike glycopro- 
tein precursor, envelope small membrane protein, membrane 
protein, and nucleoprotein (Fig. 3 C). These atomic-level pro- 
tein structures provide valuable insights into domain architec- 
ture and offer potential targets for antiviral drug or vaccine 
design. 

Thus, these results highlight MicrobialScope’s capability of 
supporting end-to-end genomic investigation—from genome 
retrieval and annotation to evolutionary analysis and struc- 
tural biology—demonstrating its potential as a valuable re- 
source for studying microbial diversity, evolution, and patho- 
genesis. 

Discussion 

MicrobialScope is a comprehensive, integrative platform that 
offers large-scale, genomic resources across the four major 
microbial domains. It also features multiscale annotations,
user interactivity, and analytical flexibility. MicrobialScope 
has four key features. First, MicrobialScope has an extensive 
data collection, incorporating over 2.6 million high-quality 
monoisolate genomes and MAGs, which are broadly represen- 
tative of microbial diversity. Second, its comprehensive anno- 
tations support both genome- and structural-based research.
Each genome undergoes standardized multiscale annotation,
including basic genomic features, genomic element predic- 
tion, functional annotation, and protein structure prediction.
Third, the platform provides informative, interactive visual- 
ization tools for exploring genomic features and annotation 
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Figure 3. Case study of coronavirus genomic characterization using MicrobialScope. ( A ) Genomic and phylogenetic analysis of 103 complete coronavirus 
genomes retrie v ed from MicrobialScope. In the ph ylogenetic tree, node colors represent host origins of corona viruses. Shapes indicate tax onomic 
classification: y ello w circles f or Alphacorona virus , blue squares f or B etacorona virus , green stars f or Gammacorona virus , and pink triangles f or 
Deltacorona virus . B ar plots indicate numbers of predicted genes in each genome. ( B ) Genome str uct ure of a representative S AR S-lik e corona virus (i.e. 
GCA_0311 621 55.1). From outer to inner circles: genomic coordinates (kb), GC content, GC sk e w on the positive (red) and negative (green) strands, and 
annotated coding sequences. ( C ) Predicted 3D str uct ures of six viral proteins from a representative SARS-like coronavirus (i.e. GCA_0311 621 55.1) 
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esults, enabling users to intuitively examine genomic struc-
ures and functional components. Fourth, MicrobialScope is
pen access with full data availability. MicrobialScope is freely
ccessible without registration and has full download support
or all data resources. 

MicrobialScope provides distinctive improvements over
xisting microbial genome databases and web tools in
erms of data scale, annotation depth, and interactiv-
ity ( Supplementary Table S4 ). First, MicrobialScope inte-
grates over 2.6 million microbial genomes—including both
monoisolates and MAGs—spanning bacteria, archaea, fungi,
and viruses, whereas most existing resources emphasize ei-
ther a specific domain (e.g. BV-BRC for pathogens [ 21 ],
MBGD without viral genomes [ 73 ]) or focus primarily on
monoisolates (e.g. RefSeq, IMG). Second, MicrobialScope
delivers systematic and standardized annotations of func-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1234#supplementary-data
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tional and structural genomic elements, covering underrepre-
sented features often absent from other databases (e.g. NCBI
RefSeq [ 19 ], EBI MGnify [ 20 ], PATRIC [ 74 ], IMG [ 22 ],
MBGD [ 73 ], and CMR [ 75 ]), such as anti-CRISPR proteins,
transmembrane proteins, and AI-driven protein structure pre-
dictions. Third, MicrobialScope provides user-friendly inter-
face that supports real-time querying, interactive visualiza-
tion, and data export, together with integrated analytical tools
for ORF prediction, functional classification, sequence align-
ment, and comparative genomics. Collectively, these advances
make MicrobialScope a powerful and scalable resource for
microbial genome research and large-scale genetic element
analysis. 

MicrobialScope aims to support microbiological research
by providing a broad, standardized, and sustainable genomic
infrastructure. Accordingly, we will continue to update Mi-
crobialScope in response to the demands of the research com-
munity. First, we will update MicrobialScope annually to in-
corporate newly released monoisolate genomes and MAGs
and ensure its long-term utility. Second, we will implement
additional bioinformatic and AI-assisted annotation modules
to enhance online analysis, data mining, and biological inter-
pretation. Third, we will strengthen community engagement
through data submission, structured feedback, and collabora-
tive development modules. Last, we will build secure, scalable
infrastructure to support large-scale data processing, long-
term storage, and efficient data retrieval. 

In summary, MicrobialScope is a valuable microbial ge-
nomic resource that integrates comprehensive genomic data,
rich multilevel annotations, and interactive analytical tools
to empower systematic investigations of microbes and host–
microbe interactions. 
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