
1

Briefings in Bioinformatics, 23(1), 2022, 1–17

https://doi.org/10.1093/bib/bbab452
Problem Solving Protocol

Somatic variant analysis suite: copy number variation
clonal visualization online platform for large-scale
single-cell genomics

Lingxi Chen†, Yuhao Qing†, Ruikang Li†, Chaohui Li†, Hechen Li,
Xikang Feng and Shuai Cheng Li
Corresponding author: Shuai Cheng Li, Department of Computer science, City University of Hong Kong. Tel.: +852-3442-9412; Fax: +852-3442-0503;
E-mail: shuaicli@cityu.edu.hk
†Joint First Authors.

Abstract

The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor
heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative
visualization of copy number analysis results boosts productive scientific exploration, validation and sharing. Several
single-cell analysis figures have the effectiveness of visualizations for understanding single-cell genomics in published
articles and software packages. However, they almost lack real-time interaction, and it is hard to reproduce them. Moreover,
existing tools are time-consuming and memory-intensive when they reach large-scale single-cell throughputs. We present
an online visualization platform, single-cell Somatic Variant Analysis Suite (scSVAS), for real-time interactive single-cell
genomics data visualization. scSVAS is specifically designed for large-scale single-cell genomic analysis that provides an
arsenal of unique functionalities. After uploading the specified input files, scSVAS deploys the online interactive
visualization automatically. Users may conduct scientific discoveries, share interactive visualizations and download
high-quality publication-ready figures. scSVAS provides versatile utilities for managing, investigating, sharing and
publishing single-cell CNV profiles. We envision this online platform will expedite the biological understanding of cancer
clonal evolution in single-cell resolution. All visualizations are publicly hosted at https://sc.deepomics.org.
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Introduction

The intratumor heterogeneity (ITH) is one of the principal causes
of cancer therapy resistance, tumor recurrence and deaths
[1]. An accurate understanding of the subclone structure and
evolutionary history benefits precise treatments for individual
patients [2]. Although the traditional bulk DNA-Seq studies have
contributed perspicacity into tumor biology, they are restricted
to offering the mixed signals of tumor cells or clones, which hold
genotype diversity, leading to the mask of ITH [3]. For instance, if
the averaged read-out overrepresents the genomic data from the
prevailing cluster of the tumor cells, rare subclones will be veiled
from the signals. The dedicated deconvolution computational
approaches for bulk DNA-Seq can only provide a model of the
mixture of cell types or subclones and their evolution history
[4–6].

Over the past decade, the remarkably increasing interest
in developing single-cell DNA sequencing (scDNA-Seq) wet-lab
protocols in both academia and industry overcome this hurdle by
profiling DNA reads with single-cell resolution. The first emer-
gence was in 2011, Navin et al. [7] developed the scDNA-seq for
breast cancer cells. The pioneering research platforms including
high-density FACS assays [8, 9], microfluidic [10] and nanowell
[11] were restricted by sequencing hundreds to 1000 cells at a
time [12]. With the rapid development of high throughput tech-
nologies, commercial platforms such as Mission Bio [13] and 10x
Genomics [14] arose with the aid of droplet systems. Likewise,
researchers have proposed several high-throughput protocols
including combinatorial indexing methods [15, 16] and acoustic
cell tagmentation, recently elevated by Navin’s team [17]. The
explosion of scDNA-Seq studies involves a range of cancer types,
including bladder cancer [18], breast cancer [7, 10, 11, 17, 19–24],
colorectal cancer [25, 26], gastric cancer [14], leukemia cancer
[27–32], melanoma cancer [3], etc. To summarize, the abovemen-
tioned cancer studies exploit the single-molecule resolution to
decipher the etiology of ITH [14], metastasis [21] and therapeutic
resistance [12].

Currently, the typical applications of scDNA-Seq may go into
the following aspects: (i) delineating the copy number (CN) pro-
files and phylogeny architecture of every single molecule [7, 17];
(ii) inferring tumor cell clumps that share similar clonal sub-
structure [17]; (iii) building the clonal lineage within a tumor [7],
along time [23] or among multi lesions [21]; (iv) resolving muta-
tion co-occurrence and mutual exclusivity across subclones and
patients [19, 26]. To boost productive scientific exploration, val-
idation and sharing, researchers can investigate these analysis
results by a series of plots (Figure 1A): (i) CNV heatmap, cell
phylogeny tree [19, 20, 22]; (ii) ploidy stairstep and distribution
[33], embedding map [17, 23]; (iii) clonal lineage and prevalence
across time and space [7, 21, 23]; (iv) focal CNV among subclones
and patients. Nevertheless, the dedicated visualization tools
for single-cell genomics and CN evolution fail to provide the
complete set of the abovementioned figures. As listed in Table 1,
Ginkgo [34] is an online single-cell CNV caller that only provides
static CNV heatmap figures and is incompatible with large-scale
single-cell data. E-Scape [35] provides interactive visualization of
cell CNV heatmap and clonal evolution (in fishplot and subclone
lineage tree) across time and space. Powered with R Shiny, it
requires R programming skills. Meanwhile, there exists memory
and time deficiency when dealing with thousands of single
cells. 10x Loupe scDNA Browser [14] focuses on interactively
visualizing the CNV profile of single-cell genomics, including cell
CNV heatmap, cell meta heatmap, zoomable cell dendrogram,
gene track, zoomable genomic region and search local genomic

region. However, it only accepts the data generated from the 10x
genomics CNV solution and pipeline.

Therefore, we present an online platform single-cell Somatic
Variant Analysis Suite (scSVAS) (https://sc.deepomics.org) for
real-time interactive and user-friendly single-cell CNV visual-
ization. scSVAS offers 11 visualization interfaces, including CNV
View, CNV Heatmap, Cell Phylogeny, Ploidy Stairstep, Ploidy Dis-
tribution, Embedding Map, Time Lineage, Space Lineage, Space
Prevelance, Clonal Lineage and Recurrent Event (Figures 1–12,
Table 1). To our knowledge, scSVAS is the first online platform
specialized for large-scale scDNA CNV visualization that pro-
vides an arsenal of functionalities shared between visualiza-
tion interfaces. For instance, we offer the users an editor to
upload the required upstream analysis output and customize
the display settings (Supplementary Figure S1 and Table S2). We
provide an interactive tooltip to display vital information for
each visualization object, assisting users in making scientific
discoveries effectively. scSVAS is code free for users. All visu-
alizations are downloadable in high-quality publication-ready
format. We support dark and light themes for visualization and
offer a collection of scientific (SCI) journal color palettes. Fur-
thermore, scSVAS offers several unique biological visualization
interfaces, including the grouped CN heatmap of cell clump;
gene set and repeat masker annotation along the local genomic
region; a zoomable circular dendrogram of single cells; cell-gene
or cell-bin CN heatmap; ploidy stairstep/distribution of specified
single cell and cell clump; 2D embedding map plot powered
with hexagonal binning; movable lesion pointer to easy adjust
the lesion position on zoomable anatomy image; lesion lineage
tree; clonal frequency bipartite graph between tumor clone and
lesion; ploidy stairstep comparison between parent and child
clone; recurrent ploidy stairstep comparison between subclones
and patients.

Materials and methods
Online platform framework

scSVAS is deployed on a remote CentOS 7.4 server with 128 GB
memory and 60 TB storage. We utilized Ruby on Rails (v5.2.3),
Apache (v2.4.6) and PostgreSQL (v12.3) as backend framework;
HTML5, Vue.js (v2.6.10) and Oviz [36] (https://oviz.org), an in-
house visualization framework written in TypeScript, as fron-
tend support. Supplementary Table S1 lists the full technology
stack of scSVAS.

Offline pipeline

For each visualization application, users need to prepare the
input files (Supplementary Figure S1 and Table S2). Most of the
customized file formats are easy to generate from upstream
CNV analysis. At this moment, equipped with scSVAS offline
pipeline, scSVAS supports output files from scDNA CNV call-
ing tools 10X cellranger-cnv [14], SCYN and SeCNV. Users can
use the provided scripts to generate the required files locally
and upload them to the corresponding visualization pages. The
offline pipeline is available at https://github.com/deepomicslab/
scSVAS. The guidelines to run the offline scripts and prepare the
input files are in the online documentation page of https://sc.dee
pomics.org.

Demo data

All online analyses provide demo files for an instant preview,
which are available at Editor on each application page. Sup-
plementary Table S3 demonstrates the demo datasets currently
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scSVAS 3

Table 1. Key functionalities of scSVAS visualizations. ‘�’ is marked if benchmark tools Ginkgo [34], E-Scape [35] or 10x Loupe [14] supports the
described functionality, ‘–’ otherwise

scSVAS applications Key functionalities Ginkgo [34] E-Scape [35] Loupe [14]

Common features Online platform √ – –
Interactive plot – √ √
Code free √ – √
SCI color palette – – –
Dark-light theme – – –
Downloadable high-quality figures √ √ √

CNV View Cell CNV heatmap √ √ √
Cell meta heatmap – – √
Zoomable cell dendrogram – – √
Group CN heatmap/stairstep – – –

CNV Heatmap Cell CNV heatmap √ √ √
Cell meta heatmap – – √
Zoomable cell dendrogram – – √
Gene Track – – √
RepeatMasker Track – – –
Zoomable genomic region – – √
Search local genomic region – – √

Cell Phylogeny Zoomable (top-down/circular) cell
dendrogram

– – –

Cell-gene CNV heatmap – – –
Cell-bin CNV heatmap – – –

Ploidy Stairstep Cell/group/total ploidy stairstep – – –
Ploidy Distribution Cell/group/total ploidy distribution – – –
Embedding Map 2D embedding plot – – –

Scatterplot/hexagonal binning – – –
Color annotation: cell density/gene
CNV/meta information

– – –

Time Lineage Evolution fishplot with different layout – √ –
Fishplot with bullet shape – – –
Circular/acute lineage tree – – –
Cell ensemble presentation – – –

Space Lineage Subclone lineage tree – √ –
Lesion lineage tree – –
Zoomable anatomy image – – –
Movable lesion pointer – – –

Space Prevalence Subclone lineage tree – √ –
Lesion lineage tree – –
Clonal frequency matrix/bipartite graph
between subclone and lesion

– – –

Clonal Lineage Subclone lineage tree – – –
Group CNV heatmap – – –
Cell ensemble presentation – – –
Clonal stairstep comparison – – –
Customized gene selection and gene set
annotation

– – –

Recurrent Event Recurrent stairstep comparison – – –
Recurrent focal gain/loss – – –
Customized gene selection and gene set
annotation

– – –

adopted. For CNV View, CNV Heatmap, Cell Phylogeny, Ploidy
Stairstep, Ploidy Distribution, Embedding Map and Clonal Lin-
eage, we downloaded the raw FASTQ data of TNBC_T10 with
the SRA code SRA018951 [7], profiled the CNV matrix utilizing
SCYN and generated the corresponded input files with scSVAS
offline pipeline. For Time Lineage, Space Lineage and Space
Prevalence, we obtained the input files (AML [37], HGSOC_P7 [38]
and PC_A21 [39]) directly from E-Scape’s demo dataset [35]. The
lung cancer data present in Recurrent Event are an in-house data
and available at the Editor sidebar ‘Demo File Sets’ (https://sc.dee
pomics.org/oviz-project/analyses/recurrent_event).

Database

To make the scSVAS visualization more informative and user
friendly, we utilize several third-party databases and websites.
Ensembl [40] database helps to locate the exact gene and
transcript in CNV Heatmap, Clonal Lineage, Recurrent Eevent
applications. UCSC genome browser [41] provides the cytobands,
non-N region and genome repeat annotation for visualization
applications if applicable. In Cell Phylogeny, Clonal Lineage
and Recurrent Event, redirection to GeneCards [42] www.gene
cards.org is offered. Furthermore, MsigDB (v7.2) [43] database is
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4 Chen et al.

Figure 1. (A) Thumbnails of 11 scSVAS visualization applications. (B) Functionalities comparison between scSVAS, Ginkgo [34], E-Scape [35] and 10x Loupe scDNA

Browser [14]. (C) scSVAS unique features compared with the other three tools. SCI: Scientific Journal. Freepik and macrovector/Freepik design the cartoon anatomy

image, we acknowledge for the free license.

adopted for gene set annotation in Clonal Lineage and Recurrent
Event.

Time and memory optimization for large-scale scDNA
data

The loading time of a multitude of scDNA data has a significant
impact on the user experience. The number of Oviz components
needed directly affects the visualization interfaces’ rendering
time, especially the CNV heatmap or embedding scatterplot,
which carries thousands of single cells and genomic region bins.
To reduce the time and space complexity, we apply the strategies
of compression and loading on demand.

CNV heatmap is a matrix of CNV count with single cells
as rows and genomic regions as columns, which is rendered
as a grid of colored rectangles. The number of elements in
the matrix could be huge, which dramatically slows down the
rendering process. Therefore, we compressed the CNV data with
an acceptable compression rate before rendering by merging
adjacent DNA segments into larger ones, reducing the number
of columns in the processed CNV matrix. We design a functional
scaling slider to zoom-in the local genomic region to reverse
the zooming process when higher resolution is in demand.
The single-cell dendrogram tree (i.e. the nest relation of Oviz
components) also could cause significant effects on the render-
ing speed of the output SVG diagram of the Oviz framework.
For instance, an Oviz component directly containing a large
number of subcomponents renders slower than rendering the
same number of subcomponents that are evenly distributed to
several containers. Therefore, we apply the cut-dendrogram to
collapse the descending clades as a whole. This design breaks
the whole heatmap grid into several fragments that are rendered
separately, which dramatically improves the rendering time at

around six times compared with generating all colored blocks
in one container component. If a higher resolution is required,
users can click a node in the cut-dendrogram, the selected
node will be regarded as the temporary tree root, and a new
subcut-dendrogram will be rendered.

The traditional embedding plot is a scatterplot that placed
the single cells in a canvas with their 2D embedding coordinates.
Thousands of singleton data points (e.g. single cells) caused
colossal time and space burden. Instead of rendering a scat-
terplot with plenty of points overlapped, we exploit hexagonal
binning to aggregates the adjacent data points into different
hexagonal bins, which are mutually exclusive and size adjustable
on a 2D-Embedding plot, according to the points’ original
positions. We use Paths in SVG to define the hexagon shape of
data bins, which is size adjustable. Each hexagon has a unique
centroid, and all of them are aligned with the same offset and
embedded well row by row on a 2D-Embedding plot without any
gap.

Results
Single-cell CNV landscape and phylogeny

CNV heatmap is an intrinsic way to visualize the landscape
of single-cell CNV profiles in the literature [19, 20, 22, 23, 44].
Efficient visualization of the heatmap with a large (e.g. 1k ×
5k) size is critical for scientific interpretation. Plotting using R,
Python packages or existing heatmap visualization tools like
E-Scape are incredibly time-consuming and memory-intensive
when it reaches thousands of cells and thousands of genomic
regions [35]. It is essential to reduce the size of the heatmap
while retaining the heterogeneity among single cells. The 10x
Loupe [14] solves this issue by building a single-cell dendrogram
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Figure 2. CNV view interface (https://sc.deepomics.org/oviz-project/analyses/view). (A) The full display of CNV view on demo data TNBC_T10. From left to right are

zoomable cut-dendrogram, cell meta heatmap and cell CNV heatmap. Subgroup CNV heatmap and stairstep located in the bottom layers. The cell CNV heatmap

exhibits the CN of single cells across the entire genome, with single cells as rows and genomic regions as columns. The blue, white and dark red tiles represent CN

loss, neutral and gain. Gray tiles denote the CN of the corresponding genomic region is not available. The cut-dendrogram and CNV heatmap indicate two amplified

tumor clumps (colored red), and one subclone exhibits loss of heterogeneity (colored with white and blue). When the mouse cursor hovers on the cell CNV heatmap,

the tooltip will display the genome position and the CN of a unit. The name of the corresponding leaf node in the cut-dendrogram will also be shown. Furthermore,

the genome position, the leaf node and the range of leaf nodes will be highlighted. (B) Zoomable cut-dendrogram node. The tooltip will display the name of the current

node, the number of cells in it, the parent node of it and the distance between it and the root node. Further, the subtree and the covered cell range of the current node

will be highlighted. (C) Zoomable cut-dendrogram branch. The tooltip will display the names of the associated parent and child nodes and their branch distance. The

branch, the parent node and the child node will be highlighted. (D) Cell meta heatmap. The tooltip will display the cell ID and meta-label of a unit. (E) Subgroup CNV

heatmap. The tooltip will display the genome position, the CN and the subgroup name. (F) Subgroup CNV stairstep. The tooltip will display the genome position and

the average CN of cells for all subgroups.

in advance, splitting single cells into less than 100 subgroups
by cutting the dendrogram and collapsing single cells inside
the cluster into one row in the heatmap. Cluster zoom-in/out
operation is achieved by clicking the node in the dendrogram.
However, 10x Loupe only supports the 10x CNV protocol. Thus,
cooperating scSVAS offline pipeline, we build a web interface
CNV View as demonstrated in Figure 2 and Table 1. CNV View
exhibits the CN of single cells across the entire genome, with
single cells as rows and genomic regions as columns. The blue,
white and dark red tiles represent CN loss, neutral and gain. Gray
tiles denote the CN of the corresponding genomic region is not
available. If users offer the cut-dendrogram of cells, a zoomable
cut-dendrogram will be displayed on the left (Figure 2A–C). The
cell meta-annotation heatmap will be displayed on the left if
users provide single-cell meta-information (Figure 2A and D).
When users click a node in the cut-dendrogram, the selected
node will be regarded as the temporary tree root, and a new
subcut-dendrogram will be rendered. The cell CNV heatmap
and meta panel will also be updated to fit the current cell
range. The ‘Back to Root’ button returns the initial status of the
whole CNV view. You may also utilize the left arrow and right
arrow buttons to un-do and re-do zooming operations. Com-
pared with Loupe, CNV View further visualizes the aggregate
subgroup CNV heatmap and stairstep in the bottom layers

(Figure 2A,E,F), which is commonly adopted in reputable
publications [22, 23]. Figure 2A exhibits the CNV landscape
of 99 triple-negative breast cancer single cells from demo
data TNBC_T10 [7]. The cut-dendrogram and CNV heatmap
indicate two amplified tumor clumps (colored red), and one
subclone exhibits loss of heterogeneity (colored with white and
blue).

CNV Heatmap (Figure 3) extends CNV View by supporting
extra genome region zooming, local region search and local
region annotation (repeats and genes). There is a genome zoom
slider located at the bottom of the CNV heatmap (Figure 3A).
Users can drag the slider to zoom-in and out on the genome
region. Users can also upload a bed region file or search for
a local genome region. If the local genome region is less than
5 M base pairs, an annotation layer including ‘Repeat track’
and ‘Gene track’ will be displayed (Figure 3B). Figure 3A shows
the CNV profiles of five cut-dendrogram clades from chr4:146
000 001 to chr13:25 500 000 on demo data TNBC_T10. Basi-
cally, there are two amplified tumor clumps (colored red), and
one subclone exhibits loss of heterogeneity (colored with white
and blue). Figure 3B displays the CNV profiles of local region
chr2:140924620–145924620 with repeat/gene track on demo data
TNBC_T10. The repeat elements in the RepeatMasker database
are stacked along the 50 M local region in the repeat track. The
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6 Chen et al.

Figure 3. CNV heatmap interface (https://sc.deepomics.org/oviz-project/analyses/heatmap). (A) The display of CNV heatmap with genome zoom slider on demo data

TNBC_T10. Users can adjust and drag the slider along the genome region to zoom-in and out. It shows the CNV profiles of five cut-dendrogram clades from chr4:146

000 001 to chr13:25 500 000. This demo figure shows two amplified tumor clumps (colored red), and one subclone exhibits loss of heterogeneity (colored with white

and blue). (B) The display of local region chr2:140924620–145924620 CNV heatmap with repeat/gene track and a local region zoom slider on demo data TNBC_T10. The

repeat elements in RepeatMasker database are stacked along the 50 M local region in the repeat track. When the mouse cursor hovers, the tooltip will display the names

of repeat class, repeat element, repeat family, genome position and strand information of a selected repeat. The gene track lists all transcripts available (e.g. LRP1B) in

the 50 M area. When the mouse cursor hovers on it, the tooltip will display the transcript name, gene body interval, exon number and exon intervals for covered gene

exon. Users can adjust and drag the slider along the local region to zoom-in and out.

gene track lists all transcripts available (e.g. LRP1B) in the 50 M
area.

Besides, we build Cell Phylogeny (Figure 4) to concentrates
on the zoomable cut-dendrogram of single cells. It offers two
tree layouts (top-down and circular) and supports cell-gene or
cell-region CNV as meta-annotation. Figure 4 suggests the CN
of several genes (e.g. ANXA2) and genomics bins varies between
cell clumps.

Single-cell ploidy profile

The tumor CNV in different regions may encounter dramatic
gain or loss [33, 45–47]. The plot of ploidy line along the
chromosomes can visually show the heterogeneity between
tumor subclones by combining genomic coordinates. By
collapsing the single cells in the same tumor subclones
into one observation, we can infer the pseudo-bulk ploidy
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Figure 4. Cell Phylogeny interface (https://sc.deepomics.org/oviz-project/analyses/cell_phylogeny). (A) The display of Cell Phylogeny in top-down mode on demo data

TNBC_T10. It shows that the CN of genes (e.g. ANXA2) and genomics bins vary between cell clumps. (B) The display of Cell Phylogeny in circular mode on demo data

TNBC_T10. When the mouse cursor hovers on the cell CNV heatmap, the tooltip will display the column name of a unit (such as gene or bin region) and its corresponding

leaf node in the cut-dendrogram. Furthermore, the column name, the leaf node and the leaf node’s range will be highlighted.

of each subclone. Since cancer CNV ploidy line fluctuates
along chromosomes, we call it the ‘stairstep plot’. Besides,
visualization of ploidy distribution reveals the ITH as well. Thus,
we developed two web interfaces Ploidy Stairstep and Ploidy
Distribution demonstrated in Figures 5 and 6, respectively. The

layout is a matrix of the ploidy stairstep or density plot. The
column lists categorical meta-labels available in uploaded files
by default. The 1st row exhibits the ploidy of all subgroups for
specific categorical meta-labels in an aggregate form. The 2nd
line displays the collapsed ploidy of total single cells for bulk
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Figure 5. Ploidy Stairstep interface (https://sc.deepomics.org/oviz-project/analyses/ploidy_stairstep) on demo data TNBC_T10. With genome location as the x-axis and

CN as the y-axis, the stairstep plot aims to show the fluctuation of CNV along the genome. It illustrates that the averaged CNV of all cells would completely mask the

heterogeneity, with the total ploidy changing around 2–4. When it goes to subclone-resolution, we can observe the diploid cell clump (group D, cluster 1, hcluster 1),

loss of heterogeneity cell clump (group H, cluster 3, hcluster 3) and CNV gained cell clump (group A1, group A2, cluster 2, cluster 4, hcluster 2 and hcluster 4). When the

mouse cursor hovers on the plot, the tooltip will display the genome position and the average CN for each subgroup, respectively.

sequencing. Subsequent rows list the ploidy of all available
subclones, respectively. Figure 5 illustrates that the averaged
CNV of all cells would completely mask the heterogeneity, with
the total ploidy changing around 2–4. When it goes to subclone-
resolution, we can observe the diploid cell clump (group D,
cluster 1, hcluster 1) and the loss of heterogeneity cell clump
(group H, cluster 3, hcluster 3). CNV gained cell clump (group A1,
group A2, cluster 2, cluster 4, hcluster 2 and hcluster 4). Figure 6
illustrates that the TNBC_T10 is a mixture of heterogeneous
cells. We have diploid cell clump (group D, cluster 1, hcluster 1),
loss of heterogeneity cell clump (group H, cluster 3, hcluster 3)
and CNV gained cell clump (group A1, cluster 4 and hcluster 4).

Single-cell 2D embedding

High-dimensional data could be challenging to visualize. Reduc-
ing data into two dimensions is essential for representing the
inherent structure of the data [48]. In terms of today’s large-scale
scDNA throughput, a vast number of single cells may overlap
on the conventional 2D scatter canvas, thus disguising essential
information. Embedding Map (Figure 7) defeats this obstacle uti-
lizing hexagonal binning [49, 50], which also has benefits on time
and memory complexity. We offer different strategies to color
the single-cell data point. If the ‘hexagon mode’ is activated,
the embedded cells colored with density will be displayed. With

gene CNV profiles, the embedded cells can be annotated by the
specified gene’s CN. Moreover, all categorical meta-labels avail-
able will be used as color schemes by default. We also provided
the scSVAS offline pipeline, which offers linear and nonlinear
embedding techniques (e.g. PCA [51], ICA [52], NMF [53], UMAP
[54], TSNE [55], PHATE [48] and DeepMF [56]) to generate the
input files. Figure 7A shows that nonlinear TSNE and UMAP map
single cells from the same subclone closer than PCA. Besides,
the scatterplot demonstrates that CN loss of TUBA1B happens in
some cells, whereas the overplotting problem prevents us from
seeing its full picture. Figure 7B indicates that the loss of gene
TUBA1B mainly appears in tumor group H.

Clonal dynamics in time and space

Many studies have observed that ITH is one of the principal
causes of cancer therapy resistance, tumor recurrence and
deaths [1]. An accurate understanding of the subclone structure
and evolutionary history benefits precise treatments for individ-
ual patients [2]. Unlike the traditional phylogenetic trees as visu-
alized in Cell Phylogeny, the clonal lineage tree more accurately
reflects the process of tumor evolution. Ancestors and offspring
tumor cells/subpopulations can coexist in a clonal lineage tree;
therefore, the internal node can be the single-cell/subpopulation
we observed. The tumor accumulates mutations over evolution
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Figure 6. Ploidy Distribution interface (https://sc.deepomics.org/oviz-project/analyses/ploidy_distribution) on demo data TNBC_T10. With cell mean/median ploidy as

the x-axis and the number of cells as the y-axis, the ploidy distribution plot aims to reveal the ITH. It illustrates that the TNBC_T10 is a mixture of heterogeneous cells.

We have diploid cell clump (group D, cluster 1, hcluster 1), loss of heterogeneity cell clump (group H, cluster 3, hcluster 3) and CNV gained cell clump (group A1, cluster

4 and hcluster 4). When the mouse cursor hovers on the plot, the tooltip will display the current ploidy value and density for each subgroup, respectively.

time, and child tumor cell/subpopulation carries parental and
newly acquired aberrations. The tree linkage between parent and
child nodes is more about asymmetric subset connections than
symmetric distance. There are several forms to visualize the
clonal lineage tree with subclones as tree nodes. For example,
fishplot presents clonal dynamics over time [37, 57, 58]; sphere
of cells (cellular ensemble) present clonal subpopulations of
a sample [35, 58], and annotated node-based [35, 58] and
branch-based trees present clonal relationships and seeding
patterns between samples [58]. Single-cell genomics data help
researchers to resolve the ITH among multiple timepoints [23, 59]
or lesions [21]. Here, we build three web interfaces Time Lineage,
Space Lineage and Space Prevalence to visualize the evolution
dynamics between tumor subclones over time and space.

Over the past decades, researchers have been interested in
studying the clonal dynamics from multiple timepoints. For
example, the time lineage between subclones before and after
therapeutic intervention [23, 59]. In scSVAS, web interface Time

Lineage (Figure 8A) is composed of fishplot, lineage tree and cel-
lular ensemble. The fishplot conceptually manifests the propor-
tion of tumor subclones at different tumorigenesis stages across
different timepoints. We use the bezier curve to fit the trend of
subclones over time with two distinct head shapes (bullet and
onion) and three layouts (stack, space and center) (Figure 8B).
The lineage tree exhibits the evolutionary relationship between
tumor subclones; three different shapes (top-down normal, cir-
cular normal and circular acute) are served (Figure 8C). The cellu-
lar ensemble is an abstract presentation of the tumor’s cellular
prevalence at a certain time point (Figure 8D). Figure 8A and B
showcases the Time Lineage of demo data AML [37]. We observed
four tumor clumps at the time of diagnosis: subclones 2, 3, 1 and
4 ordered with cellular prevalence from high to low. The fishplot
and lineage tree show the tumor originated from subclone 1.
Next, it derived to subclones 2 and 3. Then subclone 3 evolved
into subclone 4. By the time of relapse, all pre-existed subclones
1–4 were distinct, and the subclone 5 evolved from subclone
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Figure 7. Embedding Map interface (https://sc.deepomics.org/oviz-project/analyses/embedding_map) on demo data TNBC_T10. (A) Embedding Map in scatter mode.

This figure shows that nonlinear TSNE and UMAP map single cells from the same subclone closer than PCA. Besides, the scatterplot demonstrates that CN loss of

TUBA1B happens in some cells, whereas the overplotting problem prevents us from seeing its complete picture. When the mouse cursor hovers on the scatter point,

the tooltip will display the x and y coordinates, the coloring value and the cell ID. (B) Embedding Map in hexagon mode. This figure indicates that the loss of gene

TUBA1B mainly appears in tumor group H. The tooltip will display the x and y coordinates, the coloring value, the number of cells in the hexagon bin and the list of

cell IDs.

4 occupied the entire lesion. Figure 8C and D illustrates the
lineage history of demo data HGSOC_P7 [38]. The tumor started
from subclone A and derived to subclones B and C. Then, sub-
clone C further evolved to subclones D and E. At intraperitoneal

diagnosis, the cellular proportion of tumor clumps from high to
low were subclones A, C, E and D. By the time of intraperitoneal
relapse, subclones A and A B were almost distinct, remaining
dominant and secondary tumor clumps D and C, respectively.
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Figure 8. Time Lineage interface (https://sc.deepomics.org/oviz-project/analyses/time_lineage). (A) The whole display of Time Lineage on demo data AML. The top

left, top right and bottom place the fishplot, lineage tree and cellular ensemble, respectively. We observed four tumor clumps at the time of diagnosis: subclones 2,

3, 1 and 4 ordered with cellular prevalence from high to low. The fishplot and lineage tree show the tumor originated from subclone 1. Next, it derived to subclones

2 and 3. Then subclone 3 evolved into subclone 4. By the time of relapse, all pre-existed subclones 1–4 were distinct, and the subclone 5 evolved from subclone 4

occupied the entire lesion. When the mouse cursor hovers on the one Oviz object (e.g. the lineage tree branch between subclones 3 and 4), all related Oviz objects (e.g.

subclones 3 and 4 in fishplot and cellular ensemble) are highlighted, and tooltips with vital information will appear. (B) The display of fishplot with available shapes

and layouts on demo data AML. When the mouse cursor hovers on one subclone, it will be highlighted, and a tooltip with its cellular prevalence at all timepoints will

appear. (C) The display of lineage tree with available shapes on demo data HGSOC_P7. The tumor started from subclone A and derived to subclones B and C. Then,

subclone C further evolved to subclones D and E. If the mouse cursor hovers on one clone node, it will be highlighted, and tooltips with its node name, distance to root,

clonal prevalence and the number of cells will appear. (D) The display of cellular ensemble of five tumor clumps with three timepoints: intraperitoneal diagnosis, brain

metastasis and intraperitoneal relapse for demo data HGSOC_P7. If the mouse cursor hovers on the cellular clump, it will be highlighted, and a tooltip with its clonal

name and prevalence will appear.

As for the brain metastasis, tumor clump B taken over the entire
lesion.

Space Lineage (Figure 9A) shows the clonal dynamics across
multiple lesions. In the left panel, clonal lineage trees from

multiple lesions surround a zoomable anatomical image, and
each lineage tree is equipped with an image pointer referring to
the exact location of the anatomical image. The right panel has
the anatomy image zoomer, clone lineage tree and lesion lineage
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Figure 9. Space Lineage interface (https://sc.deepomics.org/oviz-project/analyses/space_lineage). (A) The full display of Space Lineage on demo data A21. In the left

panel, clonal lineage trees from multiple lesions surround a zoomable anatomical image, and each lineage tree is equipped with an image pointer referring to the exact

location of the anatomical image. The right panel has the anatomy image zoomer, clone lineage tree and lesion lineage tree from top to bottom. This demo figure

shows that 16 tumor clumps were detected in nine primary and metastasis lesions from a prostate cancer patient. The clonal lineage tree suggests that through tumor

evolution and metastasis, subclones are scattered in different lesions. When the mouse cursor hovers over one Oviz object (e.g. the lineage tree branch link to clones

8 and 9), associated Oviz objects will be highlighted, and tooltips with essential information will appear. (B) The display of zoomable anatomy image. Users can right

click the image circle to active and deactivate it. Users can drag the circle to anywhere they want in the anatomy image to make the left/right position adjustments

when the image circle is activated. Users can also adjust the radius of the anatomy image for zooming. (C) Demonstration of cartoon anatomy atlas. Users can select

different anatomy images from the license-free cartoon anatomy atlas (male, female, brain, intestines, kidney, liver, lung, pancreas, stomach, thymus, thyroid, urinary

system, male reproductive system and female reproductive system). Freepik and macrovector/Freepik design the cartoon anatomy images, we acknowledge for the

free license. (D) The display of anatomy image pointer. Users can right click to active the anatomy image pointer and drag it to the exact lesion position.

tree from top to bottom. Users can make left/right position
adjustments and zoom-in/out of the anatomy image exploiting
the anatomy image zoomer (Figure 9B). Users can select dif-
ferent anatomy images from the license-free cartoon anatomy
atlas (male, female, brain, intestines, kidney, liver, lung, pan-
creas, stomach, thymus, thyroid, urinary system, male repro-
ductive system and female reproductive system) (Figure 9C).
Instead of the arduous lesion position precalculation required
in E-Scape [35], users can right click to active the anatomy
image pointer and drag it to the exact lesion position (Figure 9D).
Figure 9A manifests the Space Lineage of demo data PC_A21
[39]. There are 16 tumor clumps detected in nine primary and
metastasis lesions from a prostate cancer patient. The clonal

lineage tree suggests that through tumor evolution and metas-
tasis, subclones are scattered in different lesions.

Space Prevalence (Figure 10) provides the subclone and lesion
lineage trees and visualizes the clonal prevalence across sub-
clones and lesions utilizing matrices and bipartite graphs. For
instance, subclone 5 was detected in four lesions (C, G, E and H);
lesion D are dominant by subclone 3.

CNV shift across subclone

The clonal lineage trees (Time Lineage and Space Lineage) vividly
show the evolutionary dynamics between tumor subclones.
Nevertheless, they fail to display the acquired CNV between
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Figure 10. Space Prevalence interface (https://sc.deepomics.org/oviz-project/analyses/space_prevalence) on demo data A21. There are subclone lineage trees, Sankey

plot or clonal prevalence matrix and lesion lineage tree from left to right. It visualizes the clonal prevalence across subclones and lesions vividly. For instance, subclone

5 was detected in four lesions (C, G, E and H); lesion D was dominant by subclone 3. The tooltip will display the name of the subclone/lesion, the clone prevalence at

each timepoint if available. The corresponding subclone/lesion in the lineage tree, fishplot and Sankey plot will be highlighted.

parent and child clones over the evolution history. To further
illustrate the CNV shifts over the clonal lineage tree branch,
we built the web interface Clonal Lineage (Figure 11A), which
is composed of lineage tree, subclone CNV heatmap, cellular
ensemble, lineage tree branch, parent/child CNV stairstep and
gene box. The lineage tree shares four different types: top-
down normal, circular normal, circular acute and fishplot as
demonstrated in Figure 11B. The group CNV heatmap displays
the averaged CN profiles of subclones. The lineage tree branch
displays the number of gain and loss regions for each tree
branch. The stairsteps depict the detailed CNV shift from the
parent node to the child node annotated with deleted and
amplified genes. We offer MsigDB [43] and customized gene set
annotation with stacked and donut modes (Figure 11C). Users
can click the gene to direct to the GeneCards [42] website page.
One can click the lineage tree branch to check the different CNV
shifts and study the clonal dynamics from multiple timepoint
visualization of clonal lineage across time. Figure 11A shows
that the tumor started from diploid subclone c1, then derived
to subclone c2 with 532 amplification regions and 2157 loss
regions. Subclone c1 was also derived to subclone c3 with
3336 amplification regions and 224 loss regions. Subclone c3

further evolved to c4 with 1342 amplification regions and
854 loss regions. Compared with the diploid c1 cells, tumor
cells in subclone c2 harbors some CNV gain of oncogenes.
For instance, AKT3, MYC, PTK2 and CDKN1B. In addition,
plenty of carcinogenic genes in subclone c1 display the loss
of heterogeneity, such as PTEN, PIK3CA, NOTCH1, TP53, etc.

Focal gain and loss across cohort

Recurrent focal CNV across a batch of tumor samples may be
the possible driver CNV [60]. Here, Recurrent Event (Figure 12)
provides the interactive and real-time visualization of focal gains
and losses across multiple subclones and samples. In the middle,
it displays the CNV stairsteps of all subclones across samples.
The left and right gene boxes show the recurrent gain and
loss genes, respectively. Similar to Clonal Lineage, customized
gene selection and gene set (self-customized and MsigDB) anno-
tation are provided. Besides, the bottom layers demonstrate
available meta-sample information and recurrent CNV genes.
Figure 12 demonstrates that there are recurrent CNV gains on
oncogenes CDKN2A, TP53, KEAP1 and SMARCA4 across lung
cancer patients.
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Figure 11. Clonal Lineage interface (https://sc.deepomics.org/oviz-project/analyses/clonal_lineage). (A) The full display of Clonal Lineage on demo data TNBC_T10.

This demo figure shows the tumor started from diploid subclone c1, then derived to subclone c2 with 532 amplification regions and 2157 loss regions. Subclone c1

was also derived to subclone c3 with 3336 amplification regions and 224 loss regions. Subclone c3 further evolved to c4 with 1342 amplification regions and 854 loss

regions. Compared with the diploid c1 cells, tumor cells in subclone c2 harbors some CNV gain of oncogenes. For instance, AKT3, MYC, PTK2 and CDKN1B. In addition,

plenty of carcinogenic genes in subclone c1 displays the loss of heterogeneity, such as PTEN, PIK3CA, NOTCH1, TP53, etc. When the mouse cursor hovers on one Oviz

object, all related objects will be highlighted, and the tooltip will display vital information. (B) The display of lineage tree with available shape. (C) The display of gene

set annotation with stacked and donut modes.

Discussion
Visualization of single-cell CNV data plays an essential role in
sharing scientific results and acting as an auxiliary tool for data
investigation. Several visualizations for understanding single-
cell genomics have been demonstrated in published articles and

software packages. However, they lack real-time interaction,
and writing code to reproduce them is tedious. Moreover, with
the stride of high throughput scDNA sequencing, the scale of
sequenced cells escalates exponentially [3, 14, 61]. Efficient
visualization of single cells with a large (e.g. 1k × 5k) size is
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Figure 12. Recurrent Event interface (https://sc.deepomics.org/oviz-project/analyses/recurrent_event) on demo data LC. From left to right, there are deleted gene boxes,

sample subclone CNV stairstep and amplified gene boxes. The bottom layers show the sample metadata and recurrent genes. This demo figure indicates recurrent

CNV gains on oncogenes CDKN2A, TP53, KEAP1 and SMARCA4 across lung cancer patients.

critical for scientific interpretation. Plotting using R/Python
packages or existing single-cell visualization tools is
incredibly time-consuming and memory-intensive when it
reaches thousands of cells and thousands of genomic regions.

Herein, we introduce an online visualization platform,
scSVAS, that offers user-friendly and real-time interactive
single-cell genomics data visualization. It offers eleven web
visualization interfaces, including CNV View, CNV Heatmap,
Cell Phylogeny, Ploidy Stairstep, Ploidy Distribution, Embedding
Map, Time Lineage, Space Lineage, Space Prevalence, Clonal
Lineage and Recurrent Event. scSVAS is specifically designed
for large-scale single-cell analysis. scSVAS is code-free; users
have loads of choices to customize the visualization with simple
mouse operations and export the visualizations into figures. In
addition, we provided an informative user manual and demo
cases.

Dedicated tools for visualizing the single-cell genomics
and CN evolution include Ginkgo [34], E-Scape [35] and 10x
Loupe scDNA Browser [14] (Table 1). With the aid of Oviz [36]
visualization framework, the scSVAS platform supports their
functionalities and allows more exploratory functions by using
informative tooltips, simultaneously highlighting, zoom-in/out,
mouse drag-in/drag-out, etc. (Figure 1B and C and Table 1). In
particular, both 10x Loupe scDNA Browser and scSVAS (CNV
View and CNV Heatmap) show cell CNV heatmap with cell
metadata annotation, scSVAS offers extra user options to sort
the cells according to meta-label. Moreover, scSVAS provides
RepeatMasker annotation when displaying local genomic
regions. In another case, both E-Scape and scSVAS (Space
Lineage) display clonal evolution dynamics across space, with
each lesion lineage tree pointing to the exact position of the
anatomy image. scSVAS eliminates the tiresome estimation of
accurate coordinates of lesion positions with simple mouse

operations, allowing users to activate the lesion pointer and
move it to the ideal position on the anatomy image. Furthermore,
we provide a zoomable human anatomy atlas (license-free)
and extra zoom-in and out functionalities. In addition, scSVAS
contributes a more comprehensive set of single-cell CNV
analysis results, including top-down and circular cell phylogeny,
CNV ploidy stairstep and distribution, CNV embedding map,
CNV shift along clonal lineage, subclone-level recurrent CNV,
thus affording a one-stop service for single-cell CNV clonal
visualization.

Conclusion
scSVAS provides versatile utilities for managing, investigating,
sharing and publishing single-cell CNV profiles. We envision this
online platform will expedite the biological understanding of
cancer clonal evolution with single-cell resolution.

Key Points
• Informative visualization of single-cell copy number

analysis results boosts productive scientific explo-
ration, validation and sharing.

• We present an online visualization platform, scSVAS
(https://sc.deepomics.org), for real-time interactive
single-cell genomics data visualization.

• scSVAS is specifically designed for large-scale single-
cell analysis.

• Eleven web interfaces are developed, including CNV
View, CNV Heatmap, Cell Phylogeny, Ploidy Stairstep,
Ploidy Distribution, Embedding Map, Time Lineage,
Space Lineage, Space Prevalence, Clonal Lineage and
Recurrent Event.
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Data availability

All data used for visualization are available at https://sc.dee
pomics.org.

Software availability

All functionalities of scSVAS described in the manuscript
are free for anonymous access. Users can click https://sc.dee
pomics.org/oviz-project to try out all visualization applica-
tions. The offline pipeline is available at https://github.com/
deepomicslab/scSVAS.
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