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Abstract

The complexity of T cell receptor (TCR) sequences, particularly within the complementarity-determining region 3 (CDR3), requires
efficient embedding methods for applying machine learning to immunology. While various TCR CDR3 embedding strategies have been
proposed, the absence of their systematic evaluations created perplexity in the community. Here, we extracted CDR3 embedding models
from 19 existing methods and benchmarked these models with four curated datasets by accessing their impact on the performance
of TCR downstream tasks, including TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering, and
visualization analysis. We assessed these models utilizing eight downstream classifiers and five downstream clustering methods, with
the performance measured by a diverse range of metrics for precision, robustness, and usability. Overall, handcrafted embeddings
outperformed data-driven ones in modeling TCR-epitope interactions. To further refine our comparative findings, we developed an
all-in-one TCR CDR3 embedding package comprising all evaluated embedding models. This package will assist users in easily selecting
suitable embedding models for their data.

Keywords: TCR-epitope interaction; benchmarking TCR CDR3 encoding; biological relevance of embeddings; data-driven and hand-
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Introduction

T cells, as pivotal mediators of the immune response, recog-
nize and bind antigens through T cell receptors (TCRs). The
complementarity determining region 3 (CDR3) of TCRB chains
encapsulates significant immunological diversity [1, 2]. These
TCR sequences not only record an individual’s immunological
history but also aid in developing diagnostic tools by providing
insights into immune dynamics [3-7].

The advances in machine learning have propelled the study
of TCRs forward, particularly through the analysis of CDR3
sequences. For instance, Beshnova et al. employed a convolutional
neural network (CNN) model that learned the patterns within
CDR3 sequences to establish a relationship between TCR
repertoires and cancer, culminating in a cancer indicator tool
named DeepCAT [8]. Similarly, other computational approaches
like DeepTCR and TEINet have targeted the CDR3 region to model
TCRs for various immune-related predictive tasks [9-12]. These
approaches transform CDR3 sequences into high-dimensional
embeddings to capture essential computational features.

Encoding strategies range from handcrafted feature extrac-
tion, which utilizes amino acid characteristics or BLOSUM matrix
similarity scores guided by expert-devised rules [13, 14], to data-
driven methods that learn directly from sequence data [10, 15].
Although various methods claim superiority, the absence of a
comprehensive benchmark hinders our ability to evaluate their

effectiveness objectively, leaving significant gaps in understand-
ing the advantages of each approach [16].

The design of CDR3 encoding methods must strive for a
balance between biological relevance, robustness, and usage
cost [17]. Therefore, their evaluation should cover assessments
in these areas to determine each method’s efficacy. Biological
relevance ensures that the encoded CDR3s authentically repre-
sent immunological functions. An effective embedding should
accurately cluster CDR3s with akin functions and structures,
mirroring the biological principle of antigen recognition. Robust-
ness requires encoding methods to perform well across different
downstream tasks, be compatible with varied machine-learning
models, and withstand diverse parameter settings. Furthermore,
computational efficiency and user-friendliness are practical
considerations that reflect usage costs. By addressing these
criteria, benchmarks can help identify encoding techniques
that are both scientifically insightful and pragmatically viable,
providing a solid foundation for advancing immunological
predictions.

In this study, we benchmark a range of CDR3 encoding methods
and establish a comprehensive benchmark for their systematic
evaluation. Our framework evaluates these methods based on bio-
logical relevance, robustness, and usage cost, providing a critical
assessment tool for CDR3 encoding in immunological research.
We test these methods through a series of tasks, including generic
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TCR-epitope binding prediction, epitope-specific TCR identifica-
tion, and TCR clustering. Extensive testing is conducted using a
variety of algorithms, metrics, and parameters. We also employ
visual analysis to examine the spatial distribution of embeddings
generated by different methods. Additionally, we evaluate compu-
tational demands and ease of use to determine the practicality of
each method. The conclusions drawn from our benchmarks help
researchers select suitable encoding methods and standardize the
evaluation process for future TCR encoding models. Moreover, we
have integrated all methods involved in this project into an all-in-
one Python package to simplify usage.

Materials and methods
Preprocessing of datasets

In this project, we utilized multiple data sources, carrying out
further processing to refine the datasets for our analyses. Our
filtering strategy included removing low-quality CDR3 sequences,
specifically those containing stop codons, or with lengths shorter
than 10 or longer than 30 amino acids, and excluding epitope
sequences longer than 20 amino acids. We retained amino acid
sequences that begin with cysteine (C) and end with phenylala-
nine (F), while excluding any sequences containing non-standard
amino acids. Additionally, we excluded entries lacking epitope or
antigen labels. Details of the data sources and the extra processing
steps applied to the datasets are described in the Supplementary
Notes 1.5.

Implementation of embedding methods

We employed 19 tools to assess a variety of CDR3 embedding
strategies, extracting embedding components directly from the
source codes of each tool. For handcrafted methods, we used
the default parameter settings provided by the developers,
adjusting parameters only when necessary. For data-driven
approaches, we retrained TCRpeg, catELMo, DeepTCR, pMTnet,
and Word2Vec using a designated retraining dataset, as detailed
in Supplementary Notes 1.5.5 and Supplementary Fig. S20.
Specifically for TCRanno, to avoid data leakage and ensure
fairness, we retrained it using a hold-out dataset separate from
the clustering dataset, since its embeddings are derived from a
supervised learning classifier. Detailed implementation specifics
and parameter settings for each method are documented in
Supplementary Notes 1.3.

Design for TCR-epitope affinity prediction task

The prediction of TCR-epitope binding affinity is approached as
a binary classification task, where pairs (t,e), consisting of a
TCR sequence t and an epitope e, are labeled as non-binding (0)
or binding (1). The negative pairs are generated using random
recombination strategy [18]. The task aims to develop classifiers
that can accurately predict the binding affinity y for novel TCR-
epitope pairs. Training and validation data are divided using the
three data-splitting strategies mentioned in the following section,
and the models’ generalization capabilities are evaluated using an
independent test set.

We evaluated the performance of embedding methods for
TCR-epitope affinity prediction under two scenarios. The first,
referred to as the Generic TCR-epitope binding affinity prediction,
involved testing various downstream classifiers on a dataset
containing all epitopes. Epitopes were uniformly encoded using
the BLOSUMS62 encoder, and TCR sequences were encoded using
different CDR3 encoding methods. For ImRex, we employed its
unique encoding scheme for TCR-epitope pairs. In this scenario,
we tested CDR3 encoding 18 methods, excluding TCRanno. For the

second scenario, Epitope-specific TCR identification, we extracted
epitope-specific subsets from the complete epitope binding
dataset based on the most dominant epitopes present. Six subsets,
each containing only one type of epitope, were formed to evaluate
whether classifiers could distinguish between binding TCRs and
non-binding TCRs. All methods except TCRanno were tested in
this task.

Data splitting strategies for TCR-epitope affinity
prediction task

We employed three dataset-splitting strategies to evaluate the
models’ ability to handle unseen data. The dataset was first
divided using a random division approach, termed the Random
Split, with a training-to-validation ratio of 9:1. Additionally, to
assess the embedding models’ performance on unseen data, we
implemented two further data partitioning strategies as intro-
duced by the ATM-TCR project [18]: TCR Split and Epitope Split.

TCR Split: The dataset was divided such that all TCR sequences
in the validation set were distinct from those in the training set,
testing the models’ extrapolation to new TCR sequences.

Epitope Split: This strategy ensured that epitope sequences in
the validation set were not included in the training set, allowing
evaluation of the models’ performance on previously unseen
epitopes.

Classifiers for generic binding prediction and
TCR identification tasks

We employed a suite of eight classifiers to evaluate the perfor-
mance of various TCR embedding methods. These classifiers
include gradient boosting (GB), random forest (RF), decision
tree (DT), k-nearest neighbors (KNN), multilayer perceptron
(MLP), recurrent neural network (RNN), CNN, and multi-head
self-attention model to assess the performance of various TCR
embedding methods. The detailed parameter settings for each
method are recorded in Supplementary Notes.

Clustering algorithms for TCR clustering tasks

In assessing the performance of various TCR embedding meth-
ods, we applied five clustering algorithms along with four dis-
tinct metrics to explore their stability and adaptability. These
algorithms included hierarchical clustering, k-means clustering,
spectral clustering, affinity propagation clustering, and mean-
shift clustering, all implemented via the scikit-learn [19] Python
package. We examined 18 different methods, excluding ImRex,
which necessitates the encoding of TCR-epitope pairs. To ensure
compatibility with the clustering algorithms, we transformed the
high-dimensional embeddings of individual CDR3 sequences into
flattened one-dimensional feature vectors. The detailed parame-
ter setting for each algorithm is recorded in Supplementary Notes.

UMAP visualization

For visual analysis, we utilized the UMAP package [20] to achieve
a low-dimensional representation of TCR sequence embeddings.
We performed comparisons across various methods, excluding
ImRex which requires encoding TCR-epitope pairs and hence
contains epitope label information within the embeddings.
Among the evaluated methods, the supervised deep learning
model TCRanno was specifically trained on separate TCR-epitope
paired data to avoid data leakage in this visualization [21].
Methods that transform data into vectors of shape (B,L,K)—
where B represents the dataset size, L the CDR3 length, and K
the dimension parameter—are first reshaped to (B,L x K) before
dimensionality reduction.
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UMAP reduced the dimensionality of each CDR3 embedding
to two dimensions, with points colored according to their epi-
tope labels. To ensure clarity, we filtered out CDR3 sequences
that recognize multiple epitopes according to the IEDB database,
retaining only those with a single functional specificity. This
filtering ensured that each CDR3 had a unique label, and each
label represented a specific function. Under these conditions,
clear category boundaries indicate a strong embedding-function
relevance.

Benchmark metrics

Predictive performance metrics included the area under the ROC
curve (AUC), accuracy, sensitivity, specificity, and F1 score. Metrics
for quantifying clustering performance include the adjusted Rand
index (ARI), normalized mutual information (NMI), Purity, and
Fouity=09. The detailed formula for these metrics is described in
the Supplementary Notes.

Computational resource

All methods were evaluated on a server equipped with dual Intel
Xeon Silver 4216 CPUs (total 32 cores running at 2.10 GHz) and 125
GB of system memory. Graphics processing was performed using
a single Nvidia RTX 3090 GPU featuring 24 GB of onboard memory.
The operating system was CentOS Linux release 7.9.2009.

Results
Benchmarking pipeline

Our benchmark focused on the CDR3 regions of TCRB chains,
which are key specificity determinants in antigen recognition.
We reimplemented the CDR3 encoding modules following the
provided instructions in the 18 recent studies: DeepRC [22], ImRex
[23], Luu et al. [24], Word2Vec [25], SETE [26], TCRGP [27], ATM-
TCR [18], NetTCR2.0 [28], iSMART [29], GIANA [14], TITAN [30],
ERGO-II[31], DeepTCR [9], pMTnet [15], catELMo [32], clusTCR [13],
TCRpeg [12], and TCRanno [21]. We extracted only the portions
related to encoding TCR CDR3, disregarding other aspects of the
original frameworks. Hereafter, the name of each project is used
to specifically denote its corresponding CDR3 encoding method.
Additionally, we included a universal protein model, ESM [33, 34],
as a baseline for comparison.

For some methods whose TCR encoders are based on mod-
els pre-trained on extensive data, specifically TCRpeg, catELMo,
DeepTCR, pMTnet, and Word2Vec, we retrained these models
using a uniform dataset to ensure a fair comparison and pre-
vent potential information leakage in downstream experiments
(see Materials and methods section). The benchmarking was per-
formed on these retrained models.

These encoding methods can be categorized into several dis-
tinct groups. When considering the dependency on data for fea-
ture learning, they can be classified into Handcrafted and Data-
driven strategies. From the perspective of the encoding strategy,
they can be further divided into One-hot encoding-based, Physic-
ochemical property-based, BLOSUM-based, and Deep learning-Based
methods. The characteristics of these 19 encoding methods were
summarized in Fig. 1A, Table 1 and Supplementary Fig. S1. Further
details regarding the above-mentioned encoding strategy were
introduced in the Supplementary Notes.

Our benchmarking pipeline evaluates the performance of vari-
ous CDR3 encoding strategies on three downstream experimental
tasks, including the generic TCR-epitope binding affinity pre-
diction, epitope-specific TCR identification, and TCR clustering
(Fig. 1B). In the TCR-epitope binding affinity prediction and TCR
identification tasks, eight predictive models were employed: GB,
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RF, DT, KNN, MLP, RNN, CNN, and multi-head self-attention model.
In TCR clustering, five clustering methods were utilized: mean
shift, k-means, affinity propagation, hierarchical, and spectral
clustering. Additionally, we evaluate the usability performance
of these methods based on their computation time, memory
requirements, installation dependencies, and code quality. Lastly,
the visualization analysis was designed to assess how well the
encoding methods facilitate interpreting TCR data in the 2D space,
a critical aspect for intuitive data exploration.

To undertake the benckmarking, we utilize two primary data
sources. The first, employed for binding affinity prediction task,
epitope-specific identification task, and UMAP visualization task,
is a TCR-epitope interaction dataset merged from IEDB, VDJDB,
and McPAS [36-38]. For the visualization dataset, we select TCRs
from the IEDB database that uniquely pair with a single epitope
clonotype, employing these epitopes as labels for the TCRs. The
second, used for the clustering analysis, consists of CDR3s linked
to various antigens, as collected in the GIANA project (Fig. 1C).
The datasets underwent additional quality control measures, as
detailed in the Materials and methods section. Ultimately, the
TCR-epitope binding dataset encompassed 276 057 pairs, evenly
divided between positive and negative samples. The clustering
dataset consisted of 9033 TCR sequences associated with 25 dif-
ferent antigens, guaranteeing at least 100 sequences per antigen
cluster. In the visualization dataset, there were 638 unique CDR3-
epitope pairs, with each CDR3 clonotype paired with a unique
epitope label.

After obtaining results from all 19 methods across all datasets,
we assessed the methods’ performances from multiple perspec-
tives. This evaluation was structured around three core aspects:
predictive performance, clustering performance, and usability
metrics (Fig. 1D). Predictive performance metrics included the
AUC, accuracy, sensitivity, specificity, and F1 score. Metrics for
quantifying clustering performance include the ARI, NMI, Purity,
and Fpyity=09. Usability metrics focused on computational time,
memory requirements, installation dependencies, and code
quality, which are crucial for practical adoption and integration
into existing workflows. The visualization analysis was assessed
based on the method’s ability to encode TCRs with similar
functions into proximal regions while maintaining high resolution
in the embedding space. Detailed definitions and rationale
for each metric are provided in the Materials and methods
section.

Based on our experimental results, we present a table (Fig. 2)
that captures the performance of all encoding methods across the
three domains.

Generic TCR-epitope binding affinity prediction
task
We approached the prediction of TCR-epitope binding affinity as a
binary classification task, where pairs of data consisting of a TCR
sequence and an epitope are classified as binding or non-binding.
Classifier robustness to unseen data was evaluated using three
dataset-splitting strategies: random split, TCR split, and epitope
split. The random split assesses the model’s predictive ability
across randomly chosen TCR-epitope pairings. The TCR split mea-
sures model success in predicting new, unseen TCR sequences,
and the epitope split determines predictability concerning
completely novel epitopes. Figure 3, Supplementary Figs S2-S9,
and Supplementary Table 1 display a side-by-side evaluation
of different TCR CDR3 embedding and classification techniques
under these dataset partitioning strategies. We further utilize an
independent test set from the pMTnet project to validate the
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Table 1. Summary of TCR embedding tools

Method Encoding strategy = Encoding principle Embedding shape Feature in the last dim

ImRex Handcrafted Selected physicochemical properties (B, L, 20, 5) Handcrafted physical and chemical properties

Luu et al. Handcrafted Atchley factor + mask indicator (B,L,6) Five atchley factors with a mask indicator

clusTCR Handcrafted Selected physicochemical properties (B, L x properties_num)  User-selected physical and chemical properties

ATM-TCR Handcrafted BLOSUM45 (B, L, 25) BLOSUM matrix vector

NetTCR2.0  Handcrafted BLOSUMS0 (B, L, 20) BLOSUM matrix vector

TITAN Handcrafted BLOSUMS62 (B, L, 20) BLOSUM matrix vector

TCRGP Handcrafted BLOSUMS62 + alignment + matrix (B,L x 21) Transformed BLOSUM feature
transformation

GIANA Handcrafted BLOSUMS62 + matrix transformation (B, 96) Transformed BLOSUM feature

iSMART Handcrafted BLOSUM62 + MDS (B, 96) Sequence isometric coordinates

SETE Handcrafted K-mers + PCA (B, K) Dimensionality-reduced k-mer feature

DeepRC Handcrafted One-hot (B, L, 23) Animal acid type with position information

DeepTCR Data-driven Autoencoder (B, K), defalt K=256 Deep learning representation

pMTnet Data-driven Autoencoder (B, K), defalt K=30 Deep learning representation

ERGO-II Data-driven Autoencoder (B, K), defalt K=100 Deep learning representation

TCRanno Data-driven MLP (B, K), defalt K=32 Deep learning representation

TCRpeg Data-driven LSTM (B, K), defalt K=192 Deep learning representation

catELMo Data-driven ELMo-based architecture [35] (B, K), defalt K=1024 Deep learning representation

Word2Vec Data-driven K-mers + deep neural networks (B, K), defalt K=16 Sum of learned k-mer features

ESM Data-driven Transformer + structure information (B, K), defalt K=1280 Deep learning representation

Note: This table showcases all of the embedding tools evaluated in this project. The “Embedding Shape” column defines the dimensions of the embeddings. “B”
represents the number of input sequences or the batch size. “L” is the sequence length, which can be the actual length, the maximum length, or a
predetermined fixed length. “K” denotes the embedding dimensionality controlled by hyperparameter; the table provides the default values. “properties_num”
refers to the number of user-selected features, with a default of four. The Word2Vec encoder is part of the immuneML package [25]. Among the data-driven
methods, TCRanno is trained with supervised learning on antigen-label data, while other methods are trained with unsupervised learning using the
architecture shown in the table.
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Figure 1. Overview of the benchmarking pipeline. (A) Eighteen tools plus one universal protein model (ESM) are assessed. These tools are categorized
according to the design principles of the encoder. (B) These embeddings are then utilized in four experimental tasks designed to assess the impact
of encoding strategies on TCR epitope specificity: generic TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering,
and TCR visualization analysis. Various predictive and clustering methods are applied within each task to ensure the robustness of our assessment.
(C) The TCR-epitope dataset for the binding and identification tasks consists of pairs from IEDB, VDJDB, and McPAS. The visualization dataset is a
curated selection from IEDB. The clustering dataset comprises antigen-specific TCR sequences from the GIANA project [14]. (D) Benchmarking results
are quantitatively scored across three dimensions: predictive performance, clustering performance, and usability metrics.
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Figure 2. The summary table outlines the performance of all embedding methods in experiments related to generic TCR-epitope binding affinity
prediction task, TCR clustering, and usability performance. (A) For TCR-epitope binding affinity prediction experiments, the AUC metric was employed,
with results categorized by dataset split strategies and prediction classifiers. The source data are in Supplementary Table 1. (B) In the antigen-specific
TCR clustering experiment, the results were assessed using a range of downstream clustering methods and diverse evaluation metrics. The source
data are provided in Supplementary Table 2. (C) Assessment of usability performance based on computational time, memory requirements, installation
dependencies, and code quality, resulting in an overall score reflecting practical deployment considerations for each method.

generalization capability of these embedding methods. The
results are presented in Supplementary Fig. S10.

The results revealed variance in classifier performance when
employing different splitting strategies, with no singular approach
uniformly superior. When evaluating the random and TCR split
strategies, which assess the model’s predictive ability within
a known epitope range, clusTCR—a physicochemical property-
based embedding—demonstrated the best overall performance.
It achieved the highest average AUC scores across all eight
classifiers, recording mean AUCs of 0.707 and 0.705, respectively.
Following DeepRC, based on the one-hot encoding method, is the
second-best performing method, achieving the second-highest
average AUC of 0.697 under both split strategies. From the
perspective of embedding strategies, the performance results
favor BLOSUM-based embedding methods (TCRGP, NetTCR2.0,
TITAN), which maintained high performance across both random
and TCR split strategies, consistently achieving some of the
highest or second-highest AUC scores across eight classifiers.
This robustness reflects the ability of BLOSUM-based methods
to capture essential features for TCR-epitope binding, enabling
accurate predictions even for TCR sequences not present during
training.

In contrast, SETE, a k-mer feature-based embedding method,
demonstrated the poorest predictive performance under both
split strategies, with average AUCs of 0.556 and 0.552,

respectively. Similarly, other embedding methods that also rely on
k-mer features, such as Word2Vec, demonstrated the second least
effective performance in the random split, suggesting intrinsic
limitations in their ability to capture the complexities required
for TCR-epitope binding prediction.

In terms of classifiers, RF, MLP, and the multi-head self-
attention model all produced good predictions for all embed-
ding data, with average AUCs exceeding 0.7 under both split
strategies. However, the prediction performance of more com-
plex models like CNN and RNN was relatively poor. This
indicates that different classifiers have a significant impact
on the results of TCR-epitope binding affinity prediction
experiments.

When employing the epitope split strategy, which excludes
epitopes in the validation set from the training set, the purpose
is to test a classifier’s ability to discern binding relationships
with unseen epitopes. All embedding methods across different
classifiers yielded AUC scores near the threshold of 0.5, which is
equivalent to random guessing. This uniformly poor performance
suggests that all the embeddings fail to enable classifiers to cap-
ture the general molecular binding characteristics necessary for
the effective recognition of unseen epitopes. The ability to predict
TCR recognition of novel epitopes is of substantial biological sig-
nificance, as it mirrors the adaptive immune system’s capacity to
respond to new pathogens. However, our results reveal the general
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Figure 3. Evaluation of CDR3 embedding strategies across GB, RF, DT, KNN, MLP, RNN, CNN, and self-attention classifiers for TCR-epitope binding affinity
classification task. Performance is assessed using the AUC and accuracy metrics under three dataset split strategies: random, TCR-centric, and epitope-
centric splits. Overall, classifiers exhibit variable performance across different splits, with random splits generally yielding better results and epitope-
centric splits showing notably poorer performance, in some cases falling below the AUC threshold of 0.5. Within the same split strategy, the impact of
the chosen classifier on the performance of embedding methods is discernible.

deficiency of existing methods in this scenario (Supplementary
Notes 1.10 and Supplementary Fig. 522), indicating the need to
develop more effective encoding strategies to address this limita-
tion.

Epitope-specific TCR identification task

In the epitope-specific TCR identification task, we selected
subsets of the six most dominant epitopes. For each subset, TCRs
binding to a specific epitope were labeled as positive samples, and
TCR classification was employed to evaluate the performance
of various encoding methods. The objective was to assess the
discriminative capability of these methods within datasets
defined by single epitopes. The performance measured by multi-
ple metrics, including AUC, showed significant variation across
these epitope-specific subsets (see Fig.4, and Supplementary
Figs S11-518).

Overall, no single encoding method demonstrated consistent
superiority across all conditions; different methods excelled in
different scenarios. Handcrafted-based and data-driven methods
generally performed well, indicating their strengths in various
classification tasks. SETE performed poorly on traditional clas-
sifiers. According to the results in Supplementary Figs S11-S14,
SETE achieved AUC and accuracy values close to 0.5 on DT-
based classifiers and KNN classifiers under our experimental
conditions. On classifiers based on neural networks, ImRex often
underperformed compared to other methods. For instance, in

the MLP classifier, as shown in Supplementary Fig. S15, other
tested methods achieved AUC values greater than 0.9 across all
epitope-specific subsets, whereas ImRex only achieved AUC val-
ues ranging from 0.62 to 0.89.

TCR clustering task

In our exploration of TCR clustering, we evaluated the efficacy
of multiple encoding methods in grouping antigen-labeled CDR3
sequences. Overall, methods employing a handcrafted encod-
ing strategy outperformed those utilizing a data-driven encod-
ing strategy in clustering experiments. Specifically within the
handcrafted encoding strategy, both BLOSUM-based and physico-
chemical property-based embedding methods consistently exhib-
ited superior performance compared to the other three cate-
gories across various metrics (Figs 2, 5, Supplementary Fig. S19
and Supplementary Table 2). Despite this trend, the results var-
ied across different evaluation metrics, with no single encoding
method consistently leading.

ATM-TCR, TCRGP, and NetTCR2.0, employing BLOSUM-based
strategies, were particularly effective, attaining high scores in
multiple evaluation metrics. iSMART, another method based on
BLOSUMS62 encoding, showed subpar performance compared
to ATM-TCR, suggesting that the particular handcraft matrix
transformations applied in ATM-TCR are more conducive to
clustering TCR sequences. Method clusTCR [13], employing
predefined physicochemical properties like amino acid mutation
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Figure 4. Comparative analysis of CDR3 embedding approaches on TCR-KLGGALQAK and TCR-YVLDHLIVV binding subset datasets using multiple
classifiers. The performance of 18 embedding strategies was evaluated via TCR-epitope binding affinity prediction task on two distinct epitope-specific
subsets. The AUC metric was utilized to measure classifier efficacy, highlighting the differential impact of embedding methods on predicting binding

affinity within these epitope-focused datasets.

stability and hydrophobicity, also showed strong performance,
underscoring the effectiveness of these selected features in
encoding CDR3 regions. Luu et al’s method [24], based on
five-dimensional Atchley factors with a mask indicator, was
effective but less effective than clusTCR. This observation
suggests that while the Atchley factors successfully capture the
physicochemical properties of amino acids for encoding TCR
CDR3 regions, integrating additional selected properties could
potentially enhance their functional encoding.

Data-driven methods did not perform as well as expected, often
matching or underperforming compared to the baseline method
ESM. This could be due to the typically short length of CDR3 data
or suboptimal model architectures, suggesting that the existing

deep learning models might not effectively capture the underlying
functional information within the TCR sequences. However, TCR-
peg distinguished itself within this category, achieving the highest
scores in 7 metrics and the second-highest in 2 of the 12 evaluated
metrics. This superior performance suggests that the pre-training
process employed in the TCRpeg project effectively captured the
complexities of TCR data, leading to a more accurate and robust
embedding method.

In summary, while certain encoding methods showed promise,
the overall performance across the encoding strategies was mod-
erate. The average ARI, NMI, purity, and Fyyity-09 values indicate
no universally superior embedding method for CDR3 clustering
tasks.
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Figure 5. Evaluation of CDR3 encoding strategies across k-means, spectral, and hierarchical clustering models for antigen-specific TCR clustering task.
The performance of 18 encoding strategies was evaluated via antigen-specific TCR clustering task and four metrics, including ARI, NMI, purity, and
Fpurity-0.9, were employed to assess the clustering performance. To alleviate the influence of the target number of clusters on the clustering results, a
continuous strategy for K values was adopted, ranging from 10 to 100 with a step size of 5.

Visual analysis explains model performance

To intuitively understand the characteristics of each encoding
method, we conducted a visual analysis using the UMAP tool, as
depicted in Fig. 6, with further details provided in the Materials
and methods section. This analysis enables direct observation of
the embeddings’ characteristics in the feature space, revealing
how well they can group TCRs according to their binding affinity
to the epitopes.

Our observations from the visual results align with the con-
clusions drawn from previous quantitative analysis experiments.
For instance, clusTCR emerges as one of the superior encoding
methods in our experiments, effectively predicting the binding
affinity to epitopes of TCRs. Visual analysis confirms that clusTCR
captures critical variations important for distinguishing TCRs
binding to different epitopes, representing meaningful differences
in the embedding space. Concurrently, such an encoding strategy
may tolerate minor sequence alterations that do not impact the
TCR sequences’ local structure or functional properties, a factor
crucial for successfully applying CDR3 embeddings in predictive
models of antigen specificity. Conversely, less effective methods
produced embeddings with a non-clustered distribution, which
can be categorized into two types of scenarios. One scenario
involves the embeddings from iSMART and ESM, which are dis-
persed across the feature space and fail to cluster TCRs with
similar functionalities effectively. The other scenario is observed
with TCRpeg and Word2vec, where these methods generate overly
similar embeddings for a diverse range of TCRs, thereby lacking
the granularity needed to discern subtle variations crucial for
epitope specificity.

Usability
Figure 2C and Supplementary Fig. S21 detailed our usability
assessment, considering computational efficiency and user
experience.

Our assessment revealed that NetTCR2.0, Luu et al, and
TCRGP are the most efficient, capable of embedding 200 000 TCR
sequences within 6 s. Additionally, the running times for most
methods generally stabilized below 1000 s. In contrast, even when
not accounting for model training time, pMTnet and catELMo
were considerably slower, requiring over 20 000 s to encode
200 000 sequences. Detailed running time data are available in
Supplementary Table 3.

Memory usage assessments revealed that clusTCR, Word2Vec,
and iISMART were the most economical, requiring 100 to 500MB,
while methods like ERGO-II demanded over 90 000MB for 20
000 sequences. Despite higher computational demands for cer-
tain methods, the data-driven methods evaluated in this study
typically featured clear documentation, original datasets, and
readable code, collectively contributing to execution and sec-
ondary development. Detailed memory usage data can be found
in Supplementary Table 4.

Discussion

In our study, we conducted a comprehensive evaluation of various
TCR sequence encoding methods across multiple tasks, datasets,
and conditions. Our results indicate that no single method con-
sistently outperforms others across all scenarios. This variability
highlights the variability in the effectiveness of encoding strate-
gles, which can depend significantly on factors such as dataset
generation, model parameter settings, and the specific combina-
tions of algorithms used. Therefore, users should select tools or
strategies that best fit their specific application contexts.

Among the evaluated methods, clusTCR, deepRC, and
NetTCR2.0 emerged relatively robust, offering consistent relia-
bility across various experimental contexts. As we delve deeper
into the performance of specific encoding strategies, it becomes
evident that the choice of encoding strategies and feature types
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Figure 6. UMAP dimensionality reduction of CDR3 embeddings for the unique epitope dataset. UMAP projections of TCR sequence embeddings reveal
distinct clusters corresponding to unique epitope bindings. The embeddings, derived from 18 distinct computational methods, illustrate the aggregation
of TCRs by epitope affinity, with each cluster suggesting shared binding characteristics within the dataset. This clustering underscores the potential of

these methods to discern the complex patterns of TCR-epitope interactions.

can significantly influence the outcomes of TCR-related tasks.
This leads us to thoroughly examine handcrafted and data-driven
strategies, assessing their advantages and limitations.

Handcrafted strategies, particularly those that utilize features
such as BLOSUM matrices and physicochemical properties, out-
performed data-driven strategies in our evaluations. While data-
driven strategies, which leverage deep learning frameworks to
discern patterns in extensive datasets, might seem advantageous,
they did not show superior performance in our observations and
incurred higher computational costs. This highlights the effec-
tiveness of handcrafted features in CDR3 encoding, where the
complexity of biological data can be captured more efficiently
through tailored approaches.

Furthermore, our findings emphasize the need for specifically
designed models to handle the unique challenges of CDR3 encod-
ing effectively. General-purpose protein models, such as ESM, do
not perform adequately in TCR sequence-related downstream
tasks. Although widely recognized in the protein structure encod-
ing field, such models encounter limitations when applied to
short protein sequences like CDR3s, which contain subtle and
complex sequence variations.

Key Points

e We systematically evaluated 19 TCR CDR3 embedding
models across various downstream tasks related to TCR-
epitope interaction analysis.

¢ The findings underscore that handcrafted embeddings
surpassed data-driven ones in modeling TCR-epitope
interactions.

e We developed an all-in-one TCR CDR3 embedding pack-
age comprising all evaluated embedding models.
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